Skip to main content

Recovery and Purification of Antioxidant Compounds from Plant Origin Agro-Industrial By-products

Plant Antioxidants and Health

Abstract

The plant origin materials have long been an important source of antioxidant compounds having both health and technological benefits. The increasing production brings about an immense disposal rates of the agro-food by-products including husk, bran, seed, stem, leaf, and peel residues that should be recovered as considering economic and environmental issues. These plant-based by-products generally contain even higher concentrations of antioxidant constituents compared to edible parts. However, the recovery of value-added compounds from the by-products of plant sources is challenging due to their lignocellulosic cellular structures. Therefore, scientific studies have intensively focused on the novel extraction protocols along with additional purification steps, e.g., membrane separation via ultrafiltration and diafiltration, especially in the last 10 years. The novel and often referred as green extraction techniques include deep eutectic solvent, ultrasound- and microwave-assisted extraction, etc. Optimization of process variables is also highly effective on the final product quality as well as the recovery yield and energy/solvent consumption. The functional food market is estimated to reach 275 billion US dollars within the next 5 years. Among this widespread portfolio, antioxidant fortified products have an important place in terms of economic benefits so integration of eco-friendly, high-efficient, and low-cost novel techniques into the commercial applications on the recovery of antioxidant compounds should be extended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rawdkuen S, Ketnawa S (2020) Extraction, characterization, and application of agricultural and food processing by-products. Food Preserv Waste Exploit. https://doi.org/10.5772/intechopen.89289

  2. Baiano A (2014) Recovery of biomolecules from food wastes – a review. Molecules 19:14821–14842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Selvamuthukumaran M, Shi J (2017) Recent advances in extraction of antioxidants from plant by-products processing industries. Food Qual Saf 1:61–81

    Article  CAS  Google Scholar 

  4. Coman V, Teleky BE, Mitrea L, Martău GA, Szabo K, Călinoiu LF, Vodnar DC (2020) Bioactive potential of fruit and vegetable wastes. Adv Food Nutr Res 91:157–225

    Article  PubMed  Google Scholar 

  5. Kumar K (2020) Nutraceutical potential and utilization aspects of food industry by-products and wastes. In: Food industry wastes. Elsevier, Amsterdam, pp 89–111

    Chapter  Google Scholar 

  6. Can-Cauich CA, Sauri-Duch E, Betancur-Ancona D, Chel-Guerrero L, González-Aguilar GA, Cuevas-Glory LF, Pérez-Pacheco E, Moo-Huchin VM (2017) Tropical fruit peel powders as functional ingredients: evaluation of their bioactive compounds and antioxidant activity. J Funct Foods 37:501–506

    Article  CAS  Google Scholar 

  7. Sindhi V, Gupta V, Sharma K, Bhatnagar S, Kumari R, Dhaka N (2013) Potential applications of antioxidants – a review. J Pharm Res 7:828–835

    CAS  Google Scholar 

  8. Granato D, Barba FJ, Bursać Kovačević D, Lorenzo JM, Cruz AG, Putnik P (2020) Functional foods: product development, technological trends, efficacy testing, and safety. Annu Rev Food Sci Technol 11:93–118

    Article  CAS  PubMed  Google Scholar 

  9. Yılmaz FM, Görgüç A, Karaaslan M, Vardin H, Ersus Bilek S, Uygun Ö, Bircan C (2018) Sour cherry by-products: compositions, functional properties and recovery potentials – a review. Crit Rev Food Sci Nutr 59:1–15

    Google Scholar 

  10. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436

    Article  CAS  Google Scholar 

  11. Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA (2017) Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 22:358

    Article  PubMed Central  CAS  Google Scholar 

  12. Sánchez C (2017) Reactive oxygen species and antioxidant properties from mushrooms. Synth Syst Biotechnol 2:13–22

    Article  PubMed  Google Scholar 

  13. Prasad S, Gupta SC, Tyagi AK (2017) Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett 387:95–105

    Article  CAS  PubMed  Google Scholar 

  14. Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects – a review. J Funct Foods 18:820–897

    Article  CAS  Google Scholar 

  15. Parsons B (2017) Antioxidants in food: the significance of characterisation, identification, chemical and biological assays in determining the role of antioxidants in food. Foods 6:68

    Article  PubMed Central  CAS  Google Scholar 

  16. Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: concept and principles. Int J Mol Sci 13:8615–8627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cavalcanti RN, Forster-Carneiro T, Gomes MTMS, Rostagno MA, Prado JM, Meireles MAA (2013) Uses and applications of extracts from natural sources. RSC Green Chem. https://doi.org/10.1039/9781849737579-00001

  18. Vossen P (2007) Olive oil: history, production, and characteristics of the world’s classic oils. HortScience 42:1093–1100

    Article  Google Scholar 

  19. Uceda M, Uceda M, Beltrán G, Jiménez A (2006) Olive oil extraction and quality. Grasas Aceites 57:25–31

    Article  CAS  Google Scholar 

  20. Yan H, Kerr WL (2013) Total phenolics content, anthocyanins, and dietary fiber content of apple pomace powders produced by vacuum-belt drying. J Sci Food Agric 93:1499–1504

    Article  CAS  PubMed  Google Scholar 

  21. Papoutsis K, Pristijono P, Golding JB, Stathopoulos CE, Bowyer MC, Scarlett CJ, Vuong QV (2017) Effect of vacuum-drying, hot air-drying and freeze-drying on polyphenols and antioxidant capacity of lemon (Citrus limon) pomace aqueous extracts. Int J Food Sci Technol 52:880–887

    Article  CAS  Google Scholar 

  22. Vashisth T, Singh RK, Pegg RB (2011) Effects of drying on the phenolics content and antioxidant activity of muscadine pomace. LWT Food Sci Technol 44:1649–1657

    Article  CAS  Google Scholar 

  23. Moses JA, Norton T, Alagusundaram K, Tiwari BK (2014) Novel drying techniques for the food industry. Food Eng Rev 6:43–55

    Article  Google Scholar 

  24. Jin W, Mujumdar AS, Zhang M, Shi W (2018) Novel drying techniques for spices and herbs: a review. Food Eng Rev 10:34–45

    Article  CAS  Google Scholar 

  25. Baysan U, Koç M, Güngör A, Kaymak Ertekin F (2020) Pre-drying of 2-phase olive pomace by drum dryer to improve processability. Waste Biomass Valoriz 1:3

    Google Scholar 

  26. Gião MS, Pereira CI, Fonseca SC, Pintado ME, Malcata FX (2009) Effect of particle size upon the extent of extraction of antioxidant power from the plants Agrimonia eupatoria, Salvia sp. and Satureja montana. Food Chem 117:412–416

    Article  CAS  Google Scholar 

  27. Nagy B, Simándi B (2008) Effects of particle size distribution, moisture content, and initial oil content on the supercritical fluid extraction of paprika. J Supercrit Fluids 46:293–298

    Article  CAS  Google Scholar 

  28. Makanjuola SA (2017) Influence of particle size and extraction solvent on antioxidant properties of extracts of tea, ginger, and tea-ginger blend. Food Sci Nutr 5:1179–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma MM, Mu TH (2016) Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin. Food Chem 194:237–246

    Article  CAS  PubMed  Google Scholar 

  30. Yılmaz FM, Görgüç A, Uygun Ö, Bircan C (2020) Steviol glycosides and polyphenols extraction from Stevia rebaudiana Bertoni leaves using maceration, microwave-, and ultrasound-assisted techniques. Sep Sci Technol 2020:1–13

    CAS  Google Scholar 

  31. Yılmaz FM, Karaaslan M, Vardin H (2015) Optimization of extraction parameters on the isolation of phenolic compounds from sour cherry (Prunus cerasus L.) pomace. J Food Sci Technol 52:2851–2859

    Article  PubMed  CAS  Google Scholar 

  32. Pompeu DR, Silva EM, Rogez H (2009) Optimisation of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using response surface methodology. Bioresour Technol 100:6076–6082

    Article  CAS  PubMed  Google Scholar 

  33. Silva EM, Rogez H, Larondelle Y (2007) Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep Purif Technol 55:381–387

    Article  CAS  Google Scholar 

  34. Ghafoor K (2009) Optimization of ultrasound assisted extraction of phenolic compounds and antioxidants from grape peel through response surface methodology. J Korean Soc Appl Biol Chem 52:295–300

    Article  CAS  Google Scholar 

  35. Sun Y, Xu W, Zhang W, Hu Q, Zeng X (2011) Optimizing the extraction of phenolic antioxidants from kudingcha made frrom Ilex kudingcha C.J. Tseng by using response surface methodology. Sep Purif Technol 78:311–320

    Article  CAS  Google Scholar 

  36. Saikia S, Mahnot NK, Mahanta CL (2015) Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chem 171:144–152

    Article  CAS  PubMed  Google Scholar 

  37. Rajha HN, El Darra N, Hobaika Z, Boussetta N, Vorobiev E, Maroun RG, Louka N (2014) Extraction of total phenolic compounds, flavonoids, anthocyanins and tannins from grape byproducts by response surface methodology. Influence of solid–liquid ratio, particle size, time, temperature and solvent mixtures on the optimization process. Food Nutr Sci 5:397–409

    Google Scholar 

  38. Yang B, Liu X, Gao Y (2009) Extraction optimization of bioactive compounds (crocin, geniposide and total phenolic compounds) from Gardenia (Gardenia jasminoides Ellis) fruits with response surface methodology. Innov Food Sci Emerg Technol 10:610–615

    Article  CAS  Google Scholar 

  39. Çam M, Aaby K (2010) Optimization of extraction of apple pomace phenolics with water by response surface methodology. J Agric Food Chem 58:9103–9111

    Article  PubMed  CAS  Google Scholar 

  40. Yolci Omeroglu P, Acoglu B, Özdal T, Tamer CE, Çopur ÖU (2019) Extraction techniques for plant-based bio-active compounds. In: Natural bio-active compounds. Volume 2: chemistry, pharmacology and health care practices. Springer, Singapore, pp 465–492

    Chapter  Google Scholar 

  41. Drosou C, Kyriakopoulou K, Bimpilas A, Tsimogiannis D, Krokida M (2015) A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind Crop Prod 75:141–149

    Article  CAS  Google Scholar 

  42. Wen C, Zhang J, Zhang H, Dzah CS, Zandile M, Duan Y, Ma H, Luo X (2018) Advances in ultrasound assisted extraction of bioactive compounds from cash crops – a review. Ultrason Sonochem 48:538–549

    Article  CAS  PubMed  Google Scholar 

  43. Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry – a review. Innov Food Sci Emerg Technol 9:161–169

    Article  CAS  Google Scholar 

  44. Dzah CS, Duan Y, Zhang H, Wen C, Zhang J, Chen G, Ma H (2020) The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: a review. Food Biosci 35:100547

    Article  CAS  Google Scholar 

  45. Xu D-P, Zhou Y, Zheng J, Li S, Li A-N, Li H-B (2015) Optimization of ultrasound-assisted extraction of natural antioxidants from the flower of Jatropha integerrima by response surface methodology. Molecules 21:18

    Article  PubMed Central  CAS  Google Scholar 

  46. Gençdağ E, Görgüç A, Yılmaz FM (2020) Recent advances in the recovery techniques of plant-based proteins from agro-industrial by-products. Food Rev Int. https://doi.org/10.1080/87559129.2019.1709203

  47. Xu DP, Zheng J, Zhou Y, Li Y, Li S, Li HB (2017) Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: optimization and comparison with conventional methods. Food Chem 217:552–559

    Article  CAS  PubMed  Google Scholar 

  48. Tiwari BK (2015) Ultrasound: a clean, green extraction technology. Trends Anal Chem 71:100–109

    Article  CAS  Google Scholar 

  49. Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21:323–331

    Article  CAS  Google Scholar 

  50. Chemat F, Rombaut N, Sicaire A-G, Meullemiestre A, Fabiano-Tixier A-S, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560

    Article  CAS  PubMed  Google Scholar 

  51. Garcia-Vaquero M, Ummat V, Tiwari B, Rajauria G (2020) Exploring ultrasound, microwave and ultrasound–microwave assisted extraction technologies to increase the extraction of bioactive compounds and antioxidants from brown macroalgae. Mar Drugs 18:172

    Article  CAS  PubMed Central  Google Scholar 

  52. Routray W, Orsat V (2012) Microwave-assisted extraction of flavonoids: a review. Food Bioprocess Technol 5:409–424

    Article  CAS  Google Scholar 

  53. Görgüç A, Özer P, Yılmaz FM (2019) Microwave-assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: comparative optimization study and identification of metabolomics using LC/Q-TOF/MS. J Food Process Preserv. https://doi.org/10.1111/jfpp.14304

  54. Bouras M, Chadni M, Barba FJ, Grimi N, Bals O, Vorobiev E (2015) Optimization of microwave-assisted extraction of polyphenols from Quercus bark. Ind Crop Prod 77:590–601

    Article  CAS  Google Scholar 

  55. Hosseini SS, Khodaiyan F, Yarmand MS (2016) Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydr Polym 140:59–65

    Article  CAS  PubMed  Google Scholar 

  56. Álvarez A, Poejo J, Matias AA, Duarte CMM, Cocero MJ, Mato RB (2017) Microwave pretreatment to improve extraction efficiency and polyphenol extract richness from grape pomace. Effect on antioxidant bioactivity. Food Bioprod Process 106:162–170

    Article  CAS  Google Scholar 

  57. Özer P, Görgüç A, Yılmaz FM (2018) The use of microwave technology on the extraction of macro and micro components from plant tissues. Gida J Food 43:765–775

    Google Scholar 

  58. Chandrasekaran S, Ramanathan S, Basak T (2013) Microwave food processing – a review. Food Res Int 52:243–261

    Article  CAS  Google Scholar 

  59. Li Y, Fabiano-Tixier AS, Abert-Vian M, Chemat F (2013) Microwave-assisted extraction of antioxidants and food colors. In: Microwave-assisted extraction for bioactive compounds, Food engineering series. Springer, New York, pp 103–125

    Google Scholar 

  60. Barba FJ, Zhu Z, Koubaa M, Sant’Ana AS, Orlien V (2016) Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci Technol 49:96–109

    Article  CAS  Google Scholar 

  61. Medouni-Adrar S, Boulekbache-Makhlouf L, Cadot Y, Medouni-Haroune L, Dahmoune F, Makhoukhe A, Madani K (2015) Optimization of the recovery of phenolic compounds from Algerian grape by-products. Ind Crop Prod 77:123–132

    Article  CAS  Google Scholar 

  62. Herrero M, Cifuentes A, Ibañez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae – a review. Food Chem 98:136–148

    Article  CAS  Google Scholar 

  63. Roberto M, Junior M, Vieira Leite A, Romanelli N, Dragano V (2010) Supercritical fluid extraction and stabilization of phenolic compounds from natural sources – review (supercritical extraction and stabilization of phenolic compounds). Open Chem Eng J 4:51–60

    Google Scholar 

  64. Martínez JL (2007) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press/Taylor and Francis Group, Boca Raton. https://doi.org/10.1201/9781420006513

    Book  Google Scholar 

  65. Escobedo-Flores Y, Chavez-Flores D, Salmeron I, Molina-Guerrero C, Perez-Vega S (2018) Optimization of supercritical fluid extraction of polyphenols from oats (Avena sativa L.) and their antioxidant activities. J Cereal Sci 80:198–204

    Article  CAS  Google Scholar 

  66. Gallego R, Bueno M, Herrero M (2019) Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – an update. Trends Anal Chem 116:198–213

    Article  CAS  Google Scholar 

  67. Baysal T, Ersus S, Starmans DAJ (2000) Supercritical CO2 extraction of β-carotene and lycopene from tomato paste waste. J Agric Food Chem 48:5507–5511

    Article  CAS  PubMed  Google Scholar 

  68. Valadez-Carmona L, Ortiz-Moreno A, Ceballos-Reyes G, Mendiola JA, Ibáñez E (2018) Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. J Supercrit Fluids 131:99–105

    Article  CAS  Google Scholar 

  69. Yilmaz C, Gökmen V (2013) Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions. Ind Crop Prod 49:130–135

    Article  CAS  Google Scholar 

  70. Sharif KM, Rahman MM, Azmir J, Mohamed A, Jahurul MHA, Sahena F, Zaidul ISM (2014) Experimental design of supercritical fluid extraction – a review. J Food Eng 124:105–116

    Article  CAS  Google Scholar 

  71. Li S, Wang A, Liu L, Tian G, Xu F (2019) Extraction of polysaccharides under vacuum condition from Lentinus edodes stipe and their antioxidant activities in vitro. Food Sci Biotechnol 28:759–767

    Article  CAS  PubMed  Google Scholar 

  72. Yılmaz FM, Ersus Bilek S (2017) Natural colorant enrichment of apple tissue with black carrot concentrate using vacuum impregnation. Int J Food Sci Technol 52:1508–1516

    Article  CAS  Google Scholar 

  73. Görgüç A, Özer P, Yılmaz FM (2020) Simultaneous effect of vacuum and ultrasound assisted enzymatic extraction on the recovery of plant protein and bioactive compounds from sesame bran. J Food Compos Anal 87:103424

    Article  CAS  Google Scholar 

  74. Zill-e-Huma, Abert-Vian M, Elmaataoui M, Chemat F (2011) A novel idea in food extraction field: study of vacuum microwave hydrodiffusion technique for by-products extraction. J Food Eng 105:351–360

    Article  Google Scholar 

  75. Tang B, Zhang H, Row KH (2015) Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J Sep Sci 38:1053–1064

    Article  CAS  PubMed  Google Scholar 

  76. Lakka A, Grigorakis S, Karageorgou I, Batra G, Kaltsa O, Bozinou E, Lalas S, Makris DP (2019) Saffron processing wastes as a bioresource of high-value added compounds: development of a green extraction process for polyphenol recovery using a natural deep eutectic solvent. Antioxidants 8:586

    Article  CAS  PubMed Central  Google Scholar 

  77. Liu W, Zhang K, Chen J, Yu J (2018) Ascorbic acid and choline chloride: a new natural deep eutectic solvent for extracting tert-butylhydroquinone antioxidant. J Mol Liq 260:173–179

    Article  CAS  Google Scholar 

  78. Ozturk B, Parkinson C, Gonzalez-Miquel M (2018) Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep Purif Technol 206:1–13

    Article  CAS  Google Scholar 

  79. Wu L, Li L, Chen S, Wang L, Lin X (2020) Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: optimization, comparison and antioxidant activity. Sep Purif Technol 247:117014

    Article  CAS  Google Scholar 

  80. Pal CBT, Jadeja GC (2019) Deep eutectic solvent-based extraction of polyphenolic antioxidants from onion (Allium cepa L.) peel. J Sci Food Agric 99:1969–1979

    Article  CAS  PubMed  Google Scholar 

  81. Nagarajan J, Wah Heng W, Galanakis CM, Nagasundara Ramanan R, Raghunandan ME, Sun J, Ismail A, Beng-Ti T, Prasad KN (2016) Extraction of phytochemicals using hydrotropic solvents. Sep Sci Technol 51:1151–1165

    Article  CAS  Google Scholar 

  82. Dandekar DV, Jayaprakasha GK, Patil BS (2008) Simultaneous extraction of bioactive limonoid aglycones and glucoside from Citrus aurantium L. using hydrotropy. Z Naturforsch C J Biosci 63:176–180

    Article  CAS  PubMed  Google Scholar 

  83. Chemat F, Vian MA, Ravi HK, Khadhraoui B, Hilali S, Perino S, Tixier ASF (2019) Review of alternative solvents for green extraction of food and natural products: panorama, principles, applications and prospects. Molecules 24:3007

    Article  CAS  PubMed Central  Google Scholar 

  84. Dandekar DV, Jayaprakasha GK, Patil BS (2008) Hydrotropic extraction of bioactive limonin from sour orange (Citrus aurantium L.) seeds. Food Chem 109:515–520

    Article  CAS  Google Scholar 

  85. Ba D, Boyaci IH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845

    Article  CAS  Google Scholar 

  86. Moskowitz HR, Maier A (2007) Response surface methodology and consumer-driven product optimization. In: Accelerating new food product design and development. Blackwell Publishing, Ames, pp 297–349

    Chapter  Google Scholar 

  87. Belwal T, Dhyani P, Bhatt ID, Rawal RS, Pande V (2016) Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chem 207:115–124

    Article  CAS  PubMed  Google Scholar 

  88. Bingöl D, Hercan M, Elevli S, Kiliç E (2012) Comparison of the results of response surface methodology and artificial neural network for the biosorption of lead using black cumin. Bioresour Technol 112:111–115

    Article  PubMed  CAS  Google Scholar 

  89. Mohammadzadeh A, Ramezani M, Ghaedi AM (2016) Synthesis and characterization of Fe2O3–ZnO–ZnFe2O4/carbon nanocomposite and its application to removal of bromophenol blue dye using ultrasonic assisted method: optimization by response surface methodology and genetic algorithm. J Taiwan Inst Chem Eng 59:275–284

    Article  CAS  Google Scholar 

  90. Kavuncuoglu H, Kavuncuoglu E, Karatas SM, Benli B, Sagdic O, Yalcin H (2018) Prediction of the antimicrobial activity of walnut (Juglans regia L.) kernel aqueous extracts using artificial neural network and multiple linear regression. J Microbiol Methods 148:78–86

    Article  PubMed  Google Scholar 

  91. Marchitan N, Cojocaru C, Mereuta A, Duca G, Cretescu I, Gonta M (2010) Modeling and optimization of tartaric acid reactive extraction from aqueous solutions: a comparison between response surface methodology and artificial neural network. Sep Purif Technol 75:273–285

    Article  CAS  Google Scholar 

  92. Ekici L, Simsek Z, Ozturk I, Sagdic O, Yetim H (2014) Effects of temperature, time, and pH on the stability of anthocyanin extracts: prediction of total anthocyanin content using nonlinear models. Food Anal Methods 7:1328–1336

    Article  Google Scholar 

  93. Farzaneh V, Bakhshabadi H, Gharekhani M, Ganje M, Farzaneh F, Rashidzadeh S, Carvalho IS (2017) Application of an adaptive neuro_fuzzy inference system (ANFIS) in the modeling of rapeseeds’ oil extraction. J Food Process Eng 40:e12562

    Article  CAS  Google Scholar 

  94. Crespo JG, Brazinha C (2010) Membrane processing: natural antioxidants from winemaking by-products. Filtr Sep 47:32–35

    Article  Google Scholar 

  95. Jiang B, Na J, Wang L, Li D, Liu C, Feng Z (2019) Separation and enrichment of antioxidant peptides from whey protein isolate hydrolysate by aqueous two-phase extraction and aqueous two-phase flotation. Foods 8:34

    Article  CAS  PubMed Central  Google Scholar 

  96. Nyo MK, Nguyen LT (2019) Value-addition of defatted peanut cake by proteolysis: effects of proteases and degree of hydrolysis on functional properties and antioxidant capacity of peptides. Waste Biomass Valoriz 10:1251–1259

    Article  CAS  Google Scholar 

  97. Dzah CS, Duan Y, Zhang H, Serwah Boateng NA, Ma H (2020) Latest developments in polyphenol recovery and purification from plant by-products: a review. Trends Food Sci Technol 99:375–388

    Article  CAS  Google Scholar 

  98. Soto ML, Moure A, Domínguez H, Parajó JC (2011) Recovery, concentration and purification of phenolic compounds by adsorption: a review. J Food Eng 105:1–27

    Article  CAS  Google Scholar 

  99. Jiang Z, Shi R, Chen H, Wang Y Ultrasonic microwave-assisted extraction coupled with macroporous resin chromatography for the purification of antioxidant phenolics from waste jackfruit (Artocarpus heterophyllus Lam.) peels. J Food Sci Technol 56:3877–3886. https://doi.org/10.1007/s13197-019-03858-8

  100. Yammine S, Brianceau S, Manteau S, Turk M, Ghidossi R, Vorobiev E, Mietton-Peuchot M (2018) Extraction and purification of high added value compounds from by-products of the winemaking chain using alternative/nonconventional processes/technologies. Crit Rev Food Sci Nutr 58:1375–1390

    Article  CAS  PubMed  Google Scholar 

  101. Conidi C, Drioli E, Cassano A (2018) Membrane-based agro-food production processes for polyphenol separation, purification and concentration. Curr Opin Food Sci 23:149–164

    Article  Google Scholar 

  102. Conidi C, Cassano A, Caiazzo F, Drioli E (2017) Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. J Food Eng 195:1–13

    Article  CAS  Google Scholar 

  103. Castro-Muñoz R, Yáñez-Fernández J, Fíla V (2016) Phenolic compounds recovered from agro-food by-products using membrane technologies: an overview. Food Chem 213:753–762

    Article  PubMed  CAS  Google Scholar 

  104. Agrawal H, Joshi R, Gupta M (2019) Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydrolysate. Food Res Int 120:697–707

    Article  CAS  PubMed  Google Scholar 

  105. Hu F, Te CA, Wang H, Zhang YY, Zhang JG, Thakur K, Wei ZJ (2018) Identification and hydrolysis kinetic of a novel antioxidant peptide from pecan meal using Alcalase. Food Chem 261:301–310

    Article  CAS  PubMed  Google Scholar 

  106. Kim SY, Je JY, Kim SK (2007) Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J Nutr Biochem 18:31–38

    Article  CAS  PubMed  Google Scholar 

  107. Lu X, Zhang L, Sun Q, Song G, Huang J (2019) Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Res Int 116:707–716

    Article  CAS  PubMed  Google Scholar 

  108. Díaz-Montes E, Barragán-Huerta BE, Yáñez-Fernández J (2020) Identification and evaluation of antioxidant activity of hydroxycinnamic acids extracted by ultrafiltration from three varieties of Mexican maize. Waste Biomass Valoriz 11:1799–1808

    Article  CAS  Google Scholar 

  109. Oriez V, Peydecastaing J, Pontalier PY (2019) Separation of sugarcane bagasse mild alkaline extract components by ultrafiltration – membrane screening and effect of filtration parameters. Process Biochem 78:91–99

    Article  CAS  Google Scholar 

  110. Zagklis DP, Paraskeva CA (2015) Purification of grape marc phenolic compounds through solvent extraction, membrane filtration and resin adsorption/desorption. Sep Purif Technol 156:328–335

    Article  CAS  Google Scholar 

  111. Murthy PS, Naidu MM (2012) Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food Bioprocess Technol 5:897–903

    Article  CAS  Google Scholar 

  112. Pradal D, Vauchel P, Decossin S, Dhulster P, Dimitrov K (2018) Integrated extraction–adsorption process for selective recovery of antioxidant phenolics from food industry by-product. Chem Eng Process Process Intensif 127:83–92

    Article  CAS  Google Scholar 

  113. Chen Z, Li W, Santhanam RK, Wang C, Gao X, Chen Y, Wang C, Xu L, Chen H (2019) Bioactive peptide with antioxidant and anticancer activities from black soybean [Glycine max (L.) Merr.] byproduct: isolation, identification and molecular docking study. Eur Food Res Technol 245:677–689

    Article  CAS  Google Scholar 

  114. Alfano A, Corsuto L, Finamore R, Savarese M, Ferrara F, Falco S, Santabarbara G, De Rosa M, Schiraldi C (2018) Valorization of olive mill wastewater by membrane processes to recover natural antioxidant compounds for cosmeceutical and nutraceutical applications or functional foods. Antioxidants 7:72

    Article  PubMed Central  CAS  Google Scholar 

  115. Xu D, Wang C, Zhuo Z, Ye M, Pu B (2020) Extraction, purification and antioxidant activity of polysaccharide from cold pressed oil cake of “Tengjiao” seed. Int J Biol Macromol 163:508–518

    Article  CAS  PubMed  Google Scholar 

  116. Quirós AM, Acosta OG, Thompson E, Soto M (2019) Effect of ethanolic extraction, thermal vacuum concentration, ultrafiltration, and spray drying on polyphenolic compounds of tropical highland blackberry (Rubus adenotrichos Schltdl.) by-product. J Food Process Eng. https://doi.org/10.1111/jfpe.13051

  117. Serra M, Weng V, Coelhoso IM, Alves VD, Brazinha C (2020) Purification of arabinoxylans from corn fiber and preparation of bioactive films for food packaging. Membranes 10:95

    Article  CAS  PubMed Central  Google Scholar 

  118. Ismail BB, Yusuf HL, Pu Y, Zhao H, Guo M, Liu D (2020) Ultrasound-assisted adsorption/desorption for the enrichment and purification of flavonoids from baobab (Adansonia digitata) fruit pulp. Ultrason Sonochem 65:104980

    Article  CAS  PubMed  Google Scholar 

  119. Sousa LDS, Cabral BV, Madrona GS, Cardoso VL, Reis MHM (2016) Purification of polyphenols from green tea leaves by ultrasound assisted ultrafiltration process. Sep Purif Technol 168:188–198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Mehmet Yılmaz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yılmaz, F.M., Görgüç, A., Gençdağ, E. (2021). Recovery and Purification of Antioxidant Compounds from Plant Origin Agro-Industrial By-products. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Plant Antioxidants and Health. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-45299-5_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45299-5_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45299-5

  • Online ISBN: 978-3-030-45299-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Recovery and Purification of Antioxidant Compounds from Plant Origin Agro-Industrial By-products
    Published:
    25 December 2020

    DOI: https://doi.org/10.1007/978-3-030-45299-5_24-2

  2. Original

    Recovery and Purification of Antioxidant Compounds from Plant Origin Agro-Industrial By-products
    Published:
    01 December 2020

    DOI: https://doi.org/10.1007/978-3-030-45299-5_24-1