Skip to main content
Log in

Natamycin: a natural preservative for food applications—a review

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Natamycin is a natural antimicrobial peptide produced by the strains of Streptomyces natalensis. It effectively acts as an antifungal preservative on various food products like yogurt, khoa, sausages, juices, wines, etc. Additionally, it has been used as a bio preservative and is listed as generally recognized as a safe ingredient for various food applications. In this review, natamycin properties, production methods, toxicity, and application as a natural preservative in different foods are emphasized. This review also focuses on optimal condition and process control required in natamycin production. The mode of action and inhibitory effect of natamycin on yeast and molds inhibition and its formulation and dosage to preserve various food products, coating, and hurdle applications are summarized. Understanding the scientific factors in natamycin's production process, its toxicity, and its efficiency as a preservative will open its practical application in various food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MIC:

Minimum inhibitory concentration

LD50 :

Lethal dose50

NOAEL:

No observed adverse effect level

MN:

Micronucleus

MI:

Mitotic Index

NDI:

Nuclear Division Index

References

  • Anonymous. Absorption of pimaricin following oral administration. Unpublished report submitted to WHO by the Royal Netherlands Fermentation Industries Ltd., Delft (1968)

  • Arima AA, Pavinatto FJ, Oliveira JON, Gonzales ER. The negligible effects of the antifungal natamycin on cholesterol-dipalmitoyl phosphatidylcholine monolayers may explain its low oral and topical toxicity for mammals. Colloids and Surfaces B: Biointerfaces. 122: 202–208. https://doi.org/10.1016/j.colsurfb.2014.06.058 (2014)

  • Arora R, Gupta D, Goyal J, Kaur R. Voriconazole versus natamycin as primary treatment in fungal corneal ulcers. Clinical and Experimental Ophthalmology. 39: 434–440. https://doi.org/10.1111/j.1442-9071.2010.02473.x (2011)

    Article  Google Scholar 

  • Arroyo-Lopez FN, Querol A, Bautista-Gallego J, Garrido-Fernandez A. Role of yeasts in table olive production. International Journal of Food Microbiology. 128: 189–196. https://doi.org/10.1016/j.ijfoodmicro.2008.08.018 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Atta HM, Selim SM, Zayed MS. Natamycin antibiotic produced by Streptomyces sp.: Fermentation, purification and biological activities. Journal of American Science. 8: 469–475 (2012)

  • Axelsson LT, Chung TC, Dobrogosz WJ, Lindgren SE. Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microbial Ecology in Health and Disease. 2: 131–136. https://doi.org/10.3109/08910608909140210 (1989)

    Article  Google Scholar 

  • Bakar D. Comparative studies on the qualities of commercialized yoghurt in Kumasi and the effect of Natamycin on yoghurt during storage (Doctoral dissertation) (2011)

  • Balaguer MP, Fajardo P, Gartner H, Gomez-Estaca J, Gavara R, Almenar E, Hernandez-Munoz P. Functional properties and antifungal activity of films based on gliadins containing cinnamaldehyde and natamycin. International Journal of Food Microbiology. 173: 62–71. https://doi.org/10.1016/j.ijfoodmicro.2013.12.013 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Bhunia AK, Johnson MC, Ray B. Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. Journal of Applied Bacteriology. 65: 261–268. https://doi.org/10.1111/j.1365-2672.1988.tb01893.x (1988)

    Article  CAS  Google Scholar 

  • Bolard J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes. 864(3–4): 257–304. https://doi.org/10.1016/0304-4157(86)90002-X (1986)

  • Branen AL, Davidson RM, Salminen S, Thorngate JH. Food additives (2nd ed). Marcel Dekker (2005)

  • Brick H. New molecular decomposition products of Natamycin (Pimaricin) with intact lactone ring. Journal of Antibiotics. 29: 632–637. https://doi.org/10.7164/antibiotics.29.632 (1976)

    Article  Google Scholar 

  • Brik H. Natamycin. In Analytical profile of drug resistance. Academic Press (1981)

    Book  Google Scholar 

  • Brul S, Coote P. Preservative agents in foods: mode of action and microbial resistance mechanisms. International Journal of Food Microbiology. 50(1–2): 1–17. https://doi.org/10.1016/s0168-1605(99)00072-0 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Burns J. "Tennecitin: A new antifungal antibiotic." Thesis. University of Tennessee, Knoxville (1959)

  • Chaudhari J, Chhabra G. Development and validation of stability indicating RP-HPLC method for natamycin in bulk and ophthalmic dosage forms. Asian Journal Pharmaceutical and Clinical Research. 7: 54–59 (2014)

    CAS  Google Scholar 

  • Chen GQ, Lu FP, Du LX. Natamycin production by Streptomyces gilvosporeus based on statistical optimization. Journal of Agricultural and Food Chemistry. 56: 5057–5061. https://doi.org/10.1021/jf800479u (2008)

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Förster H, Adaskaveg JE. Natamycin, a biofungicide for managing major postharvest fruit decays of citrus. Plant Disease. 8 (2021)

  • Cox GE, Bailey DE, Morgareidge K. Multigeneration reproduction studies in rats with delvocid brand of pimaricin. Unpublished report No.1-1052 submitted to WHO by Food and Drug Research Laboratories Inc (1973)

  • Dalhoff AA, Levy SB. Does use of the polyene natamycin as a food preservative jeopardise the clinical efficacy of amphotericin B? A word of concern. International Journal of Antimicrobial Agents. 45: 564–567. https://doi.org/10.1016/j.ijantimicag.2015.02.011 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Dalie DKD, Deschamps AM, Richard-Forget F. Lactic acid bacteria–Potential for control of mould growth and mycotoxins: A review. Food Control. 21: 370–380. https://doi.org/10.1016/j.foodcont.2009.07.011 (2010)

    Article  CAS  Google Scholar 

  • Davidson PM, Doan C. Natamycin. In Antimicrobials in Food (pp 339–356). CRC Press (2020)

  • De Kruijff B, Demel RA. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 339: 57–70. https://doi.org/10.1016/0005-2736(74)90332-0 (1974)

  • Delavenne E, Ismail R, Pawtowski A, Mounier J, Barbier G, Le Blay G. Assessment of lactobacilli strains as yogurt bioprotective cultures. Food Control. 30: 206–213. https://doi.org/10.1016/j.foodcont.2012.06.043 (2013)

    Article  CAS  Google Scholar 

  • Delves-Broughton J, Weber G (2011) Nisin, natamycin and other commercial fermentates used in food biopreservation. In Lacroix C, Protective cultures, antimicrobial metabolites and bacteriophages for food and beverages biopreservation (pp 63–99). Woodhead Publishing.

  • Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek. 69: 193–202 (1996)

    Article  CAS  Google Scholar 

  • Delves-Broughton J, Thomas LV, Doan CH, Davidson PM. Natamycin. In Davidson PM, Sofos JN, Branen AL (3rd ed.). Antimicrobials in food (pp 237–274). Taylor & Francis (2005)

  • Delves-Broughton J, Steenson L, Dorko C, Erdmann J, Mallory S, Norbury F, Thompson B. Use of natamycin as a preservative on the surface of baked goods: a case study. In Doona CJ, Kustin K, Feeherry FE, Case Studies in Novel Food Processing Technologies: Innovations in Processing, Packaging and Predictive Modelling (303–320). Woodhead Publishing (2010)

  • Dzigbordi B, Adubofuor J, Dufie WF. The effects of different concentrations of natamycin and the point of addition on some physicochemical and microbial properties of vanilla-flavoured yoghurt under refrigerated condition. International Food Research Journal. 20: 3287–3292. http://www.ifrj.upm.edu.my/ (2013)

  • El‐Enshasy HA, Farid MA, El‐Sayed ESA. Influence of inoculum type and cultivation conditions on natamycin production by Streptomyces natalensis. Journal of Basic Microbiology. 40: 333–342 (2000)

    Article  CAS  Google Scholar 

  • El-Matary DA, Baher WM, Zaki NM. Effect of irradiation and natamycin on decontamination of fungi from laboratory inoculated minced meat

  • Elsayed EA, Farid MAF, El Enshasy HA. Improvement in natamycin production by Streptomyces natalensis with the addition of short-chain carboxylic acids. Process Biochemistry. 48: 1831–1838 (2013)

    Article  CAS  Google Scholar 

  • Elsayed EA, Farid MA, El-Enshasy HA. Enhanced Natamycin production by Streptomyces natalensis in shake-flasks and stirred tank bioreactor under batch and fed-batch conditions. BMC Biotechnology. 19: 46. https://doi.org/10.1186/s12896-019-0546-2 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Union Commission Regulation (EU) 2015/647. Commission Regulations (EU) 2015/647 (2015)

  • Fajardo P, Martins JT, Fuciños C, Pastrana L, Teixeira JA, Vicente AA. Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. Journal of Food Engineering. 101: 349–356. https://doi.org/10.1016/j.jfoodeng.2010.06.029 (2010)

    Article  CAS  Google Scholar 

  • Fang S, Peng X, Liang X, Shen J, Wang J, Chen J, Meng Y. Enhancing water solubility and stability of natamycin by molecular encapsulation in methyl-β-cyclodextrin and its mechanisms by molecular dynamics simulations. Food Biophysics. 15: 188–195. https://doi.org/10.1007/s11483-019-09620-z (2019)

    Article  Google Scholar 

  • Farid MA, El‐Enshasy HA, El‐Diwany AI, El‐Sayed ESA. Optimization of the cultivation medium for natamycin production by Streptomyces natalensis. Journal of Basic Microbiology. 40: 157–166. https://doi.org/10.1002/1521-4028(200007)40:3%3C157::aid-jobm157%3E3.0.co;2-1 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Galvez AM, Grande Burges MJ, Lucas Loper R, Perez Pulido R (2014) Natural antimicrobials for food preservation. In: Galvez A, GrandeBurgos MJ, Lucas Lopez R, Perez Pulido R (eds) Food biopreservation. Springer, New York, pp 1–14. https://doi.org/10.1007/978-1-4939-2029-7_2.

  • Gao YR, Wang XP, Liu Y. Biological stability of natamycin solution. Food Science. 31: 41–44 (2010)

    Google Scholar 

  • Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clinical Microbiology Reviews. 12: 501–517 (1999)

    Article  CAS  Google Scholar 

  • Gourama H, Bullerman LB. Effects of potassium sorbate and natamycin on growth and penicillic acid production by Aspergillus ochraceus. Journal of Food Protection. 51: 139–144. https://doi.org/10.4315/0362-028x-51.2.139 (1988)

    Article  CAS  PubMed  Google Scholar 

  • Gross E, Kiltz HH. The number and nature of α, β-unsaturated amino acids in subtilin. Biochemical and Biophysical Research Communications 50: 559-565. https://doi.org/10.1016/0006-291X(73)90876-0 (1973)

    Article  CAS  PubMed  Google Scholar 

  • Hao XL, Zhang JJ, Li XH, Wang W. Application of a chitosan coating as a carrier for natamycin to maintain the storage quality of ground cherry (Physalis pubescens L.). Journal of Zhejiang University-Science B. 18: 807–815. https://doi.org/10.1631/jzus.B1600295 (2017)

  • He C, Zhang Z, Li B, Xu Y, Tian S. Effect of natamycin on Botrytis cinerea and Penicillium expansum—Postharvest pathogens of grape berries and jujube fruit. Postharvest Biology and Technology. 151: 134–141. https://doi.org/10.1016/j.postharvbio.2019.02.009 (2019)

    Article  CAS  Google Scholar 

  • Hondrodimou O, Kourkoutas Y, Panagou EZ. Efficacy of natamycin to control fungal growth in natural black olive fermentation. Food Microbiology. 28: 621–627. https://doi.org/10.1016/j.fm.2010.11.015 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Hsiao CH, Yeh LK, Chen HC, Lin HC, Chen PY, Ma DH, Tan HY. Clinical characteristics of Alternaria keratitis. Journal of Ophthalmology. 1–7. https://doi.org/10.1155/2014/536985 (2014)

    Article  Google Scholar 

  • Hu Z, Ahmad H, Zhang J, Zhang L, Wang T. Effects of natamycin on growth performance, serum biochemical parameters and antioxidant capacity in broiler chickens. Pakistan Journal of Zoology. 50(3): 969–976 (2018)

    Article  CAS  Google Scholar 

  • Hutchison EB, Ribelin WE, Levinskas GJ. Report on acid-degraded pimaricin: Ninety-eight day repeated feeding to rats. Unpublished report submitted to WHO by American Cyanamid Co., Central Medical Department (1966)

    Google Scholar 

  • Jiang T. Effect of natamycin in combination with pure oxygen treatment on postharvest quality and selected enzyme activities of button mushroom (Agaricus bisporus). Journal of Agricultural and Food Chemistry. 60: 2562–2568 (2012)

    Article  CAS  Google Scholar 

  • Jiang T, Feng L, Zheng X, Li J. Physicochemical responses and microbial characteristics of shiitake mushroom (Lentinus edodes) to gum arabic coating enriched with natamycin during storage. Food Chemistry. 138: 1992–1997. https://doi.org/10.1021/jf205160c (2013)

    Article  CAS  PubMed  Google Scholar 

  • Jingwei GXZKW, Yunxia R. Studies on the Effect of compound natural preservatives used in emulsion-type sausage. Journal of Chinese Institute of Food Science and Technology. https://doi.org/10.1016/j.tifs.2015.05.003 (2009)

    Article  Google Scholar 

  • Joerger MC, Klaenhammer TR. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus. Journal of Bacteriology. 167: 439–446. https://doi.org/10.1128/jb.167.2.439-446.1986 (1986)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallinteri LD, Kostoula OK, Savvaidis IN. Efficacy of nisin and/or natamycin to improve the shelf-life of Galotyri cheese. Food Microbiology. 36: 176–181. https://doi.org/10.1016/j.fm.2013.05.006 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Wickner W. Ergosterol is required for the Sec18/ATP‐dependent priming step of homotypic vacuole fusion. European Molecular Biology Organization Journal. 20: 4035–4040. https://doi.org/10.1093/emboj/20.15.4035 (2001)

    Article  CAS  Google Scholar 

  • Koontz JL, Marcy JE, Barbeau WE, Duncan SE. Stability of natamycin and its cyclodextrin inclusion complexes in aqueous solution. Journal of Agricultural and Food Chemistry. 51: 7111–7114. https://doi.org/10.1021/jf030333q (2003)

    Article  CAS  PubMed  Google Scholar 

  • Küçük GS, Çelik ÖF, Mazi BG, Türe H. Evaluation of alginate and zein films as a carrier of natamycin to increase the shelf life of kashar cheese. Packaging Technology and Science. 33: 39–48 (2020)

    Article  Google Scholar 

  • Kure CF, Skaar I, Brendehaug J. Mould contamination in production of semi-hard cheese. International Journal of Food Microbiology. 93: 41–49. https://doi.org/10.1016/j.ijfoodmicro.2003.10.005 (2004)

    Article  PubMed  Google Scholar 

  • Ledesma E, Rendueles M, Díaz M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention. Food Control. 60: 64–87. https://doi.org/10.1016/j.foodcont.2015.07.016 (2016)

    Article  CAS  Google Scholar 

  • Lee NK, Paik HD. Status, antimicrobial mechanism, and regulation of natural preservatives in livestock food systems. Korean Journal for Food Science of Animal Resources. 36: 547 (2016)

    Article  Google Scholar 

  • Levinskas GJ, Shaffer CB, Bushey C, Kunde ML, Stackhouse DW, Vidone LB, Javier B, Monell E. Two-year feeding to rats. Unpublished report from the Central Medical Department. Submitted to WHO by American Cyanamid Co (1963)

    Google Scholar 

  • Levinskas GJ, Ribelin WE, Shaffer CB. Acute and chronic toxicity of pimaricin. Toxicology and Applied Pharmacology. 8: 97–109 (1966)

    Article  CAS  Google Scholar 

  • Li N, Li H, Zhang H, Cui W, Cheng S. Induced breeding of high producing strains of natamycin from Streptomyces gilvosporeus. Journal of Food Science and Technology. 9 (2010)

  • Li M, Chen S, Li J, Ji Z. Propanol addition improves natamycin biosynthesis of Streptomyces natalensis. Applied Biochemistry and Biotechnology. 172: 3424–3432. https://doi.org/10.1007/s12010-014-0766-9 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Xu Z, Liu T, Lin J, Cen P. Effects of cultivation conditions on the production of natamycin with Streptomyces gilvosporeus LK-196. Enzyme and Microbial Technology. 42: 145–150. https://doi.org/10.1016/j.enzmictec.2007.08.012 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Zhou H, Wu Z, Zhang W. Antisepsis and fresh-keeping effects of natamycin coating compounds treatment on red-globe grape. Agricultural Science and Technology. 13: 2012–2016 (2012)

  • Lule VK, Garg S, Gosewade SC, Khedkar CD. Natamycin. In Caballero B, Finglas PM, Toldra F. Encyclopedia of food and health (pp 56–62). Academic Press (2016)

  • Luo JM, Jin ZH, Cen PL, Wang M. Measurement and correlation of the solubilities of natamycin in different solvents. Journal of Chemical Engineering of Chinese Universities. 22: 733–738 (2008)

    CAS  Google Scholar 

  • Manikindi PR. Extraction, Purification and Characterization of an Antibiotic-like Compound Produced by Rhodococcus sp. MTM3W5. 2 (Doctoral dissertation, East Tennessee State University) (2016)

  • Global Natamycin Market—Growth, Trends, COVID-19 Impact, and Forecasts (2021–2026), Mordor Intelligence

  • McNamee C, Noci F, Cronin DA, Lyng JG, Morgan DJ, Scannell AG. PEF based hurdle strategy to control Pichia fermentans, Listeria innocua and Escherichia coli k12 in orange juice. International Journal of Food Microbiology. 138: 13–18. https://doi.org/10.1016/j.ijfoodmicro.2009.12.001 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Medina A, Jiménez M, Mateo R, Magan N. Efficacy of natamycin for control of growth and ochratoxinA production by Aspergillus carbonarius strains under different environmental conditions. Journal of Applied Microbiology. 103: 2234–2239. https://doi.org/10.1111/j.1365-2672.2007.03462.x (2007)

    Article  CAS  PubMed  Google Scholar 

  • Medina E, Caro N, Abugoch L, Gamboa A, Diaz-Dosque M, Tapia C Chitosan thymol nanoparticles improve the antimicrobial effect and the water vapour barrier of chitosan-quinoa protein films. Journal of Food Engineering. 240: 191–198. https://doi.org/10.1016/j.jfoodeng.2018.07.023 (2019)

    Article  CAS  Google Scholar 

  • Mehyar GF, Al Nabulsi AA, Saleh M, Olaimat AN, Holley RA. Effects of chitosan coating containing lysozyme or natamycin on shelf‐life, microbial quality, and sensory properties of Halloumi cheese brined in normal and reduced salt solutions. Journal of Food Processing and Preservation. 42(1): 1–9. https://doi.org/10.1111/jfpp.13324 (2018)

    Article  CAS  Google Scholar 

  • Munn AL, Heese-Peck A, Stevenson BJ, Pichler H, Riezman H. Specific sterols required for the internalization step of endocytosis in yeast. Molecular Biology of the Cell. 10(11): 3943–3957 (1999)

  • Ombarak RA, Shelaby HH. The inhibitory effect of natamycin and potassium sorbate on mold growth in egyptian fresh soft cheese (Tallaga Cheese). Alexandria Journal for Veterinary Sciences. 53(2): 33–37. https://doi.org/10.5455/ajvs.264557 (2017)

    Article  Google Scholar 

  • Pedersen JC. Natamycin as a fungicide in agar media. Applied and Environmental Microbiology. 58: 1064–1066 (1992)

    Article  CAS  Google Scholar 

  • Pengfei L, Junxing Z, Shaobo L. Effects of natamycin on the elimination of fungal contamination in rice and Arabidopsis thaliana tissue cultures for Agrobacterium-mediated transformation. Research Journal of Biotechnology. 8: 3–9 (2013)

    Google Scholar 

  • Pintado CM, Ferreira MA, Sousa I. Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin. Food Control. 21: 240–246. https://doi.org/10.1016/j.foodcont.2009.05.017 (2010)

    Article  CAS  Google Scholar 

  • Pipek P, Rohlík BA, Lojkova A, Staruch L. Suppression of mould growth on dry sausages. Czech Journal of Food Sciences 28: 258–263. https://doi.org/10.17221/121/2010-CJFS (2010)

  • Ponte JG, Tsen CC. Bakery products. In Beuchat, L.R. (2nd ed.) Food and beverage mycology (pp 233–264). Van Nostrand Reinhold (1987)

  • Raab W. Natamycin (Pimaricin): Its Properties and Possibilities in Medicine. https://doi.org/10.1111/j.1439-0507.1974.tb04240.x (1972)

  • Rajarajan G, Kumaresan G, Annal R, Pandiyan C. Extending the shelf life of Khoa using antifungal agents. International Journal Chemistry Science. 8: 560–563 (2010)

    Google Scholar 

  • Ramos ÓL, Pereira JO, Silva SI, Fernandes JC, Franco MI, Lopes-da-Silva JA, Malcata FX. Evaluation of antimicrobial edible coatings from a whey protein isolate base to improve the shelf life of cheese. Journal of Dairy Science. 95: 6282–6292. https://doi.org/10.3168/jds.2012-5478 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Rasgele PG, Kaymak F. Evaluation of genotoxic and cytotoxic effects of natamycin in mice bone marrow cells. Pakistan Journal of Zoology. 45 (2013)

  • Rasgele P, KaymaK F. Effects of food preservative natamycin on liver enzymes and total protein in Mus Musculus. Bulgarian Journal of Agricultural Science. 19: 298–302 (2013)

    Google Scholar 

  • Resa CPO, Gerschenson LN, Jagus RJ. Effect of natamycin on physical properties of starch edible films and their effect on Saccharomyces cerevisiae activity. Food and Bioprocess Technology. 6: 3124–3133 (2013)

    Article  Google Scholar 

  • Resa CPO, Jagus RJ, Gerschenson LN. Natamycin efficiency for controlling yeast growth in models systems and on cheese surfaces. Food Control. 35(1): 101–108. https://doi.org/10.1016/j.foodcont.2013.06.049 (2014)

    Article  CAS  Google Scholar 

  • Resa CPO, Gerschenson LN, Jagus RJ. Starch edible film supporting natamycin and nisin for improving microbiological stability of refrigerated argentinian Port Salut cheese. Food Control. 59: 737–742. https://doi.org/10.1007/s11947-012-0960-0 (2016)

    Article  CAS  Google Scholar 

  • Romero V, Borneo R, Passalacqua N, Aguirre A. Biodegradable films obtained from triticale (x TriticosecaleWittmack) flour activated with natamycin for cheese packaging. Food Packaging and Shelf Life. 10: 54–59 (2016)

    Article  Google Scholar 

  • Safety evaluation of certain food additives and contaminants, Natamycin (pimaricin), (2002), World Health Organization Food Additive Series 48. www.inchem.org/documents/jecfa/jecmono/v48je06.htm

  • Salem, A. M., Amin, R. A., Khater, D. F. & Shokr, L. A. (2016) Antifungal effect of some chemical preservatives on aspergillus niger in minced beef meat. Benha Veterinary Medical Journal 30: 295–301. https://doi.org/10.21608/bvmj.2016.31399

  • Sara AE, Ekbal MA, Adham MA, Hamdi AM. The role of natamycin fortification to extend shelf life of plain yoghurt. Benha Veterinary Medical Journal. 27: 140–149 (2014)

    Google Scholar 

  • Sarabi Jamab M, Yazdi M, Pahlevanloo A. Effect of natamycin and temperature on microbial population of doogh during the shelf life. Journal of Nutrition, Fasting and Health. 7: 221–228 (2019)

    Google Scholar 

  • Saranraj P, Geetha M. Microbial spoilage of bakery products and its control by preservatives. International Journal of Pharmaceutical and Biological Archives. 3: 38–48 (2012)

    Google Scholar 

  • Seiler DAL. Factors affecting the use of mould inhibitors in bread and cake. In Microbial Inhibitors in Food: Proceedings of the Fourth International Symposium on Food Microbiology (pp 211–220). Almqvist & Wiksell (1964)

  • Sharma S. Food Preservatives and their harmful effects. International Journal of Scientific and Research Publications. 5(4): 1–2 (2015)

    CAS  Google Scholar 

  • Singh A., Sharma PK, Garg G. Natural products as preservatives. International Journal of Pharma and Bio Sciences. 1 (2010)

  • Stark J. Natamycin: an effective fungicide for food and beverages. Woodhead Publishing Ltd (2003)

  • Struyk AP, Hoette I, Drost G, Waisvisz JM, Van eek T, Hoogerheide JC. Pimaricin, a new antifungal antibiotic. Antibiotics Annual. 5: 878–885 (1957)

    PubMed  Google Scholar 

  • Struyk AP, Drost G, Haisvisz JM, Van Eek T, Hoogerheide JC. Pimaricin, a new antifungal antibiotic. 878–885 (1958)

  • Te Welscher YM, Hendrik H, Balagué MM, Souza CM, Riezman H, De Kruijff B, Breukink E. Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. Journal of Biological Chemistry. 283: 6393–6401. https://doi.org/10.1074/jbc.m707821200 (2008)

    Article  Google Scholar 

  • Te Welscher YM, Jones L, Van Leeuwen MR, Dijksterhuis J, De Kruijff B, Eitzen G, Breukink E. Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol. Antimicrobial Agents and Chemotherapy. 54: 2618–2625. https://doi.org/10.1128/aac.01794-09 (2010)

    Article  Google Scholar 

  • Thoma K, Kubler N. New results in the photoinstability of antimycotics. Drugs, Photochemistry and Photostability. 225: 116 (1998)

  • Tsiraki MI, El-Obeid T, Yehia HM, Karam L, Savvaidis IN. Effects of chitosan and natamycin on vacuum-packaged phyllo: A pastry product. Journal of Food Protection. 81: 1982–1987 (2018)

    Article  CAS  Google Scholar 

  • Van Eeken CJ, Birtwhistle RDR, Aboulwafa-wan Velthoven MJE. Three months study in dogs of the toxicity of natamycin by addition to the food. Unpublished report No.12.401, 24 October 1984. Submitted to WHO by Gist-Brocades Research and Development (1984)

  • Van Leeuwen MR, Golovina EA, Dijksterhuis J. The polyene antimycotics nystatin and filipin disrupt the plasma membrane, whereas natamycin inhibits endocytosis in germinating conidia of Penicillium discolor. Journal of Applied Microbiology. 106: 1908–1918 (2009)

    Article  Google Scholar 

  • Weinstein MJ, Wagman GH. Chromatography of antibiotics. Elsevier (2000)

    Google Scholar 

  • Wen M, Lin X, Yu Y, Wu J, Xu Y, Xiao G. Natamycin treatment reduces the quality changes of postharvest mulberry fruit during storage. Journal of Food Biochemistry. 43: 12934. https://doi.org/10.1111/jfbc.12934 (2019)

    Article  CAS  Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P, Van Kan JA. Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology. 8: 561–580. https://doi.org/10.1111/j.1364-3703.2007.00417.x (2007)

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Huan C, Liang X, Fang S, Wang J, Chen J. Development of starch-based antifungal coatings by incorporation of natamycin/methyl-β-cyclodextrin inclusion complex for postharvest treatments on cherry tomato against Botrytis cinerea. Molecules. 24(21): 3962. https://doi.org/10.3390/molecules24213962 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  • Yao S, Qiu D. Study on stability of natamycin. Journal of China Food Additives (2011)

  • Yİğİter B, Onay F, Akgul NB, Akocak PB. Natamycin treatment to control postharvest mold development and improve storability of citrus fruits. Journal of Food, Agriculture and Environment. 12: 188–192 (2014)

  • Yıkmış S. Investigation of the effects of non-thermal, combined and thermal treatments on the physicochemical parameters of pomegranate (Punica granatum L.) juice. Food Science and Technology Research. 25: 341–350. https://doi.org/10.3136/fstr.25.341 (2019)

    Article  CAS  Google Scholar 

  • Yikmiş S, Aksu H. Effects of natamycin and ultrasound treatments on red grape juice. Fresenius Environmental Bulletin. 29: 1012–1024 (2020)

    Google Scholar 

  • Zamfir M, Callewaert R, Cornea PC, Savu L, Vatafu I, De Vuyst L. Purification and characterization of a bacteriocin produced by Lactobacillus acidophilus IBB 801. Journal of Applied Microbiology. 87: 923–931. https://doi.org/10.1046/j.1365-2672.1999.00950.x (1999)

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Danquah MK, Jing K, Woo MW, Chen XD, Xie Y, Lu Y. Solubility properties and diffusional extraction behavior of natamycin from Streptomyces gilvosporeus biomass. Biotechnology Progress. 29: 109–115. https://doi.org/10.1002/btpr.1659 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Miao W, Zeng H, Zhao K, Zhou Y, Zhang J, Li F. Production of natamycin by Streptomyces gilvosporeus Z28 through solid-state fermentation using agro-industrial residues. Bioresource Technology. 273: 377–385 (2019)

    Article  CAS  Google Scholar 

  • Zhang X, Chi YL, Miao T, Jia DY, Yao K. Antibacterial effects of different preservatives on the major spoilage microbes in traditional fermented ham. China Condiment. 01 (2013)

Download references

Acknowledgements

The corresponding author would like to acknowledge Karunya Institute of Technology and sciences for granting permission for the collaborative review work. The first author would like to thank Dr. Kathiresan Pandian, for his valuable discussions and comments regarding natamycin production process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrakala Ravichandran.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, M., Prajapati, P., Ravichandran, C. et al. Natamycin: a natural preservative for food applications—a review. Food Sci Biotechnol 30, 1481–1496 (2021). https://doi.org/10.1007/s10068-021-00981-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-021-00981-1

Keywords

Navigation