Skip to main content

Plant Extracts: Antimicrobial Properties, Mechanisms of Action and Applications

  • Chapter
  • First Online:

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

It is generally agreed that bioactive compounds derived from plants play an important role in human health. Therefore, it is desirable to understand antimicrobial properties and mechanism of action of bioactive compounds from plants. This chapter presents a general overview of the plant extract sources, chemical structures, and antimicrobial properties. Particularly, understanding of the chemical structures of bioactives is of importance for more in-depth understanding of the mechanisms of the antimicrobial actions. The evaluation techniques for antimicrobial activity of the bioactive compounds, broadly classified as diffusion and dilution methods, are also presented in terms of principles, applications, affecting factors, advantages, and drawbacks. Furthermore, applications of plant bioactive compounds as antimicrobial preservatives in foods are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbaszadeh S, Sharifzadeh A, Shokri H, Khosravi A, Abbaszadeh A (2014) Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J Mycol Med 24(2):e51–e56

    Article  CAS  Google Scholar 

  • Abuga I, Sulaiman SF, Abdul Wahab R, Ooi KL, Abdull Rasad MSB (2020) In vitro antibacterial effect of the leaf extract of Murraya koenigii on cell membrane destruction against pathogenic bacteria and phenolic compounds identification. Eur J Integrat Med 33:101010

    Article  Google Scholar 

  • Ajani OO, Nwinyi OC (2010) Microwave-assisted synthesis and evaluation of antimicrobial activity of 3-{3-(s-aryl and s-heteroaromatic) acryloyl}-2H-chromen-2-one derivatives. J Heterocyclic Chem 47(1):179–187

    CAS  Google Scholar 

  • Ayirezang FA, Azumah BK, Achio S (2020) Effects of Moringa oleifera leaves and seeds extracts against food spoilage fungi. Adv Microbiol 10(1):27–38

    Article  CAS  Google Scholar 

  • Azmir J, Zaidul I, Rahman M, Sharif K, Mohamed A, Sahena F, Jahurul M, Ghafoor K, Norulaini N, Omar A (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117(4):426–436

    Article  CAS  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79

    Article  Google Scholar 

  • Bazargani MM, Rohloff J (2016) Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 61:156–164

    Article  CAS  Google Scholar 

  • Beevi SS, Mangamoori LN, Dhand V, Ramakrishna DS (2009) Isothiocyanate profile and selective antibacterial activity of root, stem, and leaf extracts derived from Raphanus sativus L. Foodborne Pathog Dis 6(1):129–136

    Article  CAS  Google Scholar 

  • Boberek JM, Stach J, Good L (2010) Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One 5(10):e13745

    Article  CAS  Google Scholar 

  • Bonifácio BV, dos Santos Ramos MA, da Silva PB, Bauab TM (2014) Antimicrobial activity of natural products against Helicobacter pylori: a review. Ann Clin Microbiol Antimicrob 13(1):54

    Google Scholar 

  • Bouyahya A, Lagrouh F, El Omari N, Bourais I, El Jemli M, Marmouzi I, Salhi N, Faouzi MEA, Belmehdi O, Dakka N, Bakri Y (2020) Essential oils of Mentha viridis rich phenolic compounds show important antioxidant, antidiabetic, dermatoprotective, antidermatophyte and antibacterial properties. Biocatal Agric Biotechnol 23:101471

    Article  Google Scholar 

  • Caputi L, Aprea E (2011) Use of terpenoids as natural flavouring compounds in food industry. Recent Pat Food Nutr Agric 3(1):9–16

    Article  CAS  Google Scholar 

  • Chang W, Li Y, Zhang M, Zheng S, Li Y, Lou H (2017) Solasodine-3-O-β-d-glucopyranoside kills Candida albicans by disrupting the intracellular vacuole. Food Chem Toxicol 106:139–146

    Article  CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582

    Article  CAS  Google Scholar 

  • Cui Q, Du R, Liu M, Rong L (2020) Lignans and their derivatives from plants as antivirals. Molecules 25(1):183

    Article  CAS  Google Scholar 

  • da Cruz Almeida ET, de Medeiros Barbosa I, Tavares JF, Barbosa-Filho JM, Magnani M, de Souza EL (2018) Inactivation of spoilage yeasts by Mentha spicata L. and M.× villosa huds. Essential oils in cashew, guava, mango, and pineapple juices. Front Microbiol 9:1111

    Article  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313–7352

    Article  CAS  Google Scholar 

  • Del Nobile MA, Lucera A, Costa C, Conte A (2012) Food applications of natural antimicrobial compounds. Front Microbiol 3(287):1–13

    Google Scholar 

  • Díaz-Gómez R, Toledo-Araya H, López-Solís R, Obreque-Slier E (2014) Combined effect of gallic acid and catechin against Escherichia coli. LWT Food Sci Technol 59(2):896–900

    Article  CAS  Google Scholar 

  • El-Toumy SA, Salib JY, El-Kashak WA, Marty C, Bedoux G, Bourgougnon N (2018) Antiviral effect of polyphenol rich plant extracts on herpes simplex virus type 1. Food Sci Human Wellness 7(1):91–101

    Article  Google Scholar 

  • Ferreira FD, Kemmelmeier C, Arrotéia CC, da Costa CL, Mallmann CA, Janeiro V, Ferreira FMD, Mossini SAG, Silva EL, Machinski M Jr (2013) Inhibitory effect of the essential oil of Curcuma longa L. and curcumin on aflatoxin production by Aspergillus flavus Link. Food Chem 136(2):789–793

    Article  CAS  Google Scholar 

  • Fitzgerald DJ, Stratford M, Gasson MJ, Narbad A (2005) Structure−function analysis of the vanillin molecule and its antifungal properties. J Agric Food Chem 53(5):1769–1775

    Article  CAS  Google Scholar 

  • Górniak I, Bartoszewski R, Króliczewski J (2019) Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 18(1):241–272

    Article  CAS  Google Scholar 

  • Guil-Guerrero J, Ramos L, Moreno C, Zúñiga-Paredes J, Carlosama-Yepez M, Ruales P (2016) Antimicrobial activity of plant-food by-products: a review focusing on the tropics. Livest Sci 189:32–49

    Article  Google Scholar 

  • Gutiérrez RMP, Gonzalez AMN, Hoyo-Vadillo C (2013) Alkaloids from piper: a review of its phytochemistry and pharmacology. Mini Rev Med Chem 13(2):163–193

    Google Scholar 

  • Jaime MFV, Redko F, Muschietti LV, Campos RH, Martino VS, Cavallaro LV (2013) In vitro antiviral activity of plant extracts from Asteraceae medicinal plants. Virol J 10(1):245

    Article  Google Scholar 

  • Jiang Z, Kempinski C, Chappell J (2016) Extraction and analysis of terpenes/terpenoids. Curr Protocols Plant Biol 1(2):345–358

    Article  CAS  Google Scholar 

  • Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10(10):813–829

    Article  CAS  Google Scholar 

  • Kha TC, Nguyen MH (2015) Extraction and isolation of plant bioactives. In: Scarlett C, Vuong QV (eds) Plant bioactive compounds for pancreatic cancer prevention and treatment. Nova Science Publishers, Inc., New York, pp 117–144

    Google Scholar 

  • Khameneh B, Iranshahy M, Ghandadi M, Ghoochi Atashbeyk D, Fazly Bazzaz BS, Iranshahi M (2015) Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev Ind Pharm 41(6):989–994

    Article  CAS  Google Scholar 

  • Khameneh B, Iranshahy M, Soheili V, Bazzaz BSF (2019) Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control 8(1):118

    Article  Google Scholar 

  • Kuete V (2010) Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Med 76(14):1479–1491

    Article  CAS  Google Scholar 

  • Lalani S, Poh CL (2020) Flavonoids as antiviral agents for Enterovirus A71 (EV-A71). Viruses 12(2):184

    Article  CAS  Google Scholar 

  • Lawal TO, Soni KK, Saxena R, Adeniyi BA, Mahady GB (2012) Anti-Helicobacter pylori activities of compounds of natural origin bioactive natural products: opportunities and challenges in medicinal chemistry. World Scientific, Singapore, pp 475–497

    Google Scholar 

  • Metsämuuronen S, Siren H (2014) Antibacterial compounds in predominant trees in Finland: review. J Bioprocess Biotechnol 4(167):2

    Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55(1):165–199

    Article  CAS  Google Scholar 

  • Mishra S, Pandey A, Manvati S (2020) Coumarin: an emerging antiviral agent. Heliyon 6(1):e03217

    Article  Google Scholar 

  • Mulat M, Khan F, Muluneh G, Pandita A (2020) Phytochemical profile and antimicrobial effects of different medicinal plant: current knowledge and future perspectives. Curr Tradit Med 6(1):24–42

    Article  Google Scholar 

  • Nakamoto M, Kunimura K, Suzuki JI, Kodera Y (2020) Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides. Exp Ther Med 19:1550

    CAS  Google Scholar 

  • Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6(12):1451–1474

    Article  CAS  Google Scholar 

  • Olejar KJ, Ricci A, Swift S, Zujovic Z, Gordon KC, Fedrizzi B, Versari A, Kilmartin PA (2019) Characterization of an antioxidant and antimicrobial extract from cool climate, white grape marc. Antioxidants 8(7):232

    Article  CAS  Google Scholar 

  • Prasad R, Sharma M, Kamal S, Rai MK, Rawat AKS, Pushpangdan P, Varma A (2008) Interaction of Piriformospora indica with medicinal plants. In: Varma A (ed) Mycorrhiza. Springer-Verlag, Berlin, pp 655–678

    Chapter  Google Scholar 

  • Quinto EJ, Caro I, Villalobos-Delgado LH, Mateo J, De-Mateo-Silleras B, Redondo-Del-Río MP (2019) Food safety through natural antimicrobials. Antibiotics 8(4):208

    Article  CAS  Google Scholar 

  • Radovanović V, Andjelković M, Arsić B, Radovanović A, Gojković-Bukarica L (2019) Cost-effective ultrasonic extraction of bioactive polyphenols from vine and wine waste in Serbia. S Afr J Enol Viticulture 40(2):1–1

    Google Scholar 

  • Radulovic NS, Blagojevic PD, Stojanovic-Radic ZZ, Stojanovic NM (2013) Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr Med Chem 20(7):932–952

    CAS  Google Scholar 

  • Reiter J, Levina N, Van der Linden M, Gruhlke M, Martin C, Slusarenko AJ (2017) Diallylthiosulfinate (Allicin), a volatile antimicrobial from garlic (Allium sativum), kills human lung pathogenic bacteria, including MDR strains, as a vapor. Molecules 22(10):1711

    Article  CAS  Google Scholar 

  • Roy A (2017) A review on the alkaloids an important therapeutic compound from plants. IJPB 3(2):1–9

    Google Scholar 

  • Salaheen S, Nguyen C, Hewes D, Biswas D (2014) Cheap extraction of antibacterial compounds of berry pomace and their mode of action against the pathogen Campylobacter jejuni. Food Control 46:174–181

    Article  CAS  Google Scholar 

  • Santos SAO, Martins C, Pereira C, Silvestre AJD, Rocha SM (2019) Current challenges and perspectives for the use of aqueous plant extracts in the management of bacterial infections: the case-study of salmonella enterica serovars. Int J Mol Sci 20(4):1–17

    Google Scholar 

  • Shang Z, Li S, Xiao L (2002) Review on extraction technology of alkaloids from plants. Mod Chem Ind 1:56–59

    Google Scholar 

  • Shen J, Shao X (2005) A comparison of accelerated solvent extraction, Soxhlet extraction, and ultrasonic-assisted extraction for analysis of terpenoids and sterols in tobacco. Anal Bioanal Chem 383(6):1003–1008

    Article  CAS  Google Scholar 

  • Siriyong T, Srimanote P, Chusri S, Yingyongnarongkul B-E, Suaisom C, Tipmanee V, Voravuthikunchai SP (2017) Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. BMC Complement Altern Med 17(1):405

    Article  CAS  Google Scholar 

  • Slobodníková L, Fialová S, Rendeková K, Kováč J, Mučaji P (2016) Antibiofilm activity of plant polyphenols. Molecules 21(12):1717

    Article  CAS  Google Scholar 

  • Sridevi D, Shankar C, Prakash P, Park JH, Thamaraiselvi K (2017) Inhibitory effects of reserpine against efflux pump activity of antibiotic resistance bacteria. Chem Biol Lett 4(2):69–72

    CAS  Google Scholar 

  • Stagos D (2020) Antioxidant activity of polyphenolic plant extracts. Multidisciplinary Digital Publishing Institute, Basel

    Google Scholar 

  • Takó M, Kerekes EB, Zambrano C, Kotogán A, Papp T, Krisch J, Vágvölgyi C (2020) Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms. Antioxidants 9(2):165

    Article  CAS  Google Scholar 

  • Teanpaisan R, Kawsud P, Pahumunto N, Puripattanavong J (2017) Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms. J Tradit Complement Med 7(2):172–177

    Article  Google Scholar 

  • Tsopmo A, Awah FM, Kuete V (2013) Lignans and stilbenes from African medicinal plants medicinal plant research in Africa. Elsevier, London, pp 435–478

    Book  Google Scholar 

  • Xu Y, Burton S, Kim C, Sismour E (2016) Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia-grown grape varieties. Food Sci Nutr 4(1):125–133

    Article  CAS  Google Scholar 

  • Younus I, Siddiq A, Ishaq H, Anwer L, Badar S, Ashraf M (2016) Evaluation of antiviral activity of plant extracts against foot and mouth disease virus in vitro. Pak J Pharm Sci 29(4):1263–1268

    CAS  Google Scholar 

  • Yubin J, Miao Y, Bing W, Yao Z (2014) The extraction, separation and purification of alkaloids in the natural medicine. J Chem Pharm Res 6(1):338–345

    Google Scholar 

  • Zorić N, Kosalec I, Tomić S, Bobnjarić I, Jug M, Vlainić T, Vlainić J (2017) Membrane of Candida albicans as a target of berberine. BMC Complement Altern Med 17(1):268

    Article  CAS  Google Scholar 

  • Zwenger S, Basu C (2008) Plant terpenoids: applications and future potentials. Biotechnol Mol Biol Rev 3(1):1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuyen C. Kha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kha, T.C., Le, L.T.P. (2021). Plant Extracts: Antimicrobial Properties, Mechanisms of Action and Applications. In: Inamuddin, Ahamed, M.I., Prasad, R. (eds) Advanced Antimicrobial Materials and Applications. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-7098-8_11

Download citation

Publish with us

Policies and ethics