Skip to main content

Advertisement

Log in

Valorization of Wastes from the Food Production Industry: A Review Towards an Integrated Agri-Food Processing Biorefinery

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The agri-food sector creates a significant waste stream, mainly due to inefficiencies arising from damage and loss of product throughout the supply chain. Therefore, a thorough utilization of food waste via a bio-refinery approach could play a crucial role in sustainable and zero-waste global development. This article focuses on the current status of valorization routes of selected agri-food processing waste and byproducts within an integrated biorefinery concept. First, the state-of-art extraction technologies for food-waste valorization are described, focusing on apple, tomato, grape, and defatted olive oil pomace as representative substrates. Second, the article investigates a cascade of treatments suitable for the extraction of various useful chemicals. Viable options of integrated biorefineries applied to food waste streams are presented. Selected agri-food processing side streams were divided into two different categories that, in turn, can be valorized through two different integrated combinations. Highly wet residues can be firstly treated by subcritical water to release fermentable saccharides and then valorized by hydrothermal carbonization. Conversely, oily residues can be initially treated using supercritical fluids to extract oils and subsequently converted through anaerobic digestion.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

[84]

Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Loboguerrero, A.M., Campbell, B.M., Cooper, P.J.M., Hansen, J.W., Rosenstock, T., Wollenberg, E.: Food and earth systems: Priorities for climate change adaptation and mitigation for agriculture and food systems. Sustain. 11(5), 1372 (2019). https://doi.org/10.3390/su11051372

    Article  Google Scholar 

  2. Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., Ward, P.J.: Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012). https://doi.org/10.1016/j.scitotenv.2012.08.092

    Article  Google Scholar 

  3. Henry, R.C., Engström, K., Olin, S., Alexander, P., Arneth, A., Rounsevell, M.D.A.: Food supply and bioenergy production within the global cropland planetary boundary. PLoS ONE 13, 1–17 (2018). https://doi.org/10.1371/journal.pone.0194695

    Article  Google Scholar 

  4. Sims, R., Flammini, A., Puri, M., Bracco, S.: Opportunities for agri-food chains to become energy-smart. (2016)

  5. Shaw, D.J.: World food security: A history since 1945. Palgrave Macmillan, UK (2007)

    Book  Google Scholar 

  6. Hoehn, D., Margallo, M., Laso, J., García-Herrero, I., Bala, A., Fullana-i-Palmer, P., Irabien, A., Aldaco, R.: Energy embedded in food loss management and in the production of uneaten food: Seeking a sustainable pathway. Energies 12, 1–19 (2019). https://doi.org/10.3390/en12040767

    Article  Google Scholar 

  7. Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., Meybeck, A.: Global food losses and food waste. FAO, Rome (2011)

    Google Scholar 

  8. Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A.F., Arora, A.: Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem. 223, 10–22 (2017)

    Article  Google Scholar 

  9. Madeddu, C., Roda-Serrat, M.C., Christensen, K.V., El-Houri, R.B., Errico, M.: A biocascade approach towards the recovery of high-value natural products from biowaste: State-of-art and future trends. Waste Biomass Valoriz. 12, 1143–1166 (2021). https://doi.org/10.1007/s12649-020-01082-6

    Article  Google Scholar 

  10. Macarthur, E.: Growth within: A circular economy vision for a competitive europe. (2015)

  11. Villacís-Chiriboga, J., Elst, K., Van Camp, J., Vera, E., Ruales, J.: Valorization of byproducts from tropical fruits: Extraction methodologies, applications, environmental, and economic assessment: A review part General overview of the byproducts, traditional biorefinery practices, and possible applications. Compr Rev. Food Sci Food Safety 19(2), 405–447 (2020)

    Article  Google Scholar 

  12. European Parliament and Council: Directive 2008/98/EC on waste (Waste Framework Directive). (2008)

  13. Kumar, K., Yadav, A.N., Kumar, V., Vyas, P., Dhaliwal, H.S.: Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour. Bioprocess. 4, 1–8 (2017). https://doi.org/10.1186/s40643-017-0148-6

    Article  Google Scholar 

  14. Esparza, I., Jiménez-Moreno, N., Bimbela, F., Ancín-Azpilicueta, C., Gandía, L.M.: Fruit and vegetable waste management: Conventional and emerging approaches. J. Environ. Manage. 265, 110510 (2020). https://doi.org/10.1016/j.jenvman.2020.110510

    Article  Google Scholar 

  15. RedCorn, R., Fatemi, S., Engelberth, A.S.: Comparing end-use potential for industrial food-waste sources. Engineering 4, 371–380 (2018). https://doi.org/10.1016/j.eng.2018.05.010

    Article  Google Scholar 

  16. Augustin, M.A., Sanguansri, L., Fox, E.M., Cobiac, L., Cole, M.B.: Recovery of wasted fruit and vegetables for improving sustainable diets. Trends Food Sci. Technol. 95, 75–85 (2020). https://doi.org/10.1016/j.tifs.2019.11.010

    Article  Google Scholar 

  17. Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A.S., Abert-Vian, M.: Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 41, 357–377 (2017). https://doi.org/10.1016/j.ifset.2017.04.016

    Article  Google Scholar 

  18. Dragone, G., Kerssemakers, A.A.J., Driessen, J.L.S.P., Yamakawa, C.K., Brumano, L.P., Mussatto, S.I.: Innovation and strategic orientations for the development of advanced biorefineries. Biores. Technolo. 302, 122847 (2020)

    Article  Google Scholar 

  19. Lucarini, M., Durazzo, A., Romani, A., Campo, M., Lombardi-Boccia, G., Cecchini, F.: Bio-based compounds from grape seeds: A biorefinery approach. Molecules 23, 1888 (2018). https://doi.org/10.3390/molecules23081888

    Article  Google Scholar 

  20. Cherubini, F., Jungmeier, G., Mandl, M., Philips, C., Wellisch, M., Jørgensen, H., Skiadas, I., Dohy, M., Pouet, J.C., Willke, T., Walsh, P., van Ree, R., de Jong, E.: IEA bioenergy Task 42 on biorefineries: Co-production of fuels, chemicals, power and materials from biomass. 1–37 (2015)

  21. Lange, L., Meyer, A.S.: Potentials and possible safety issues of using biorefinery products in food value chains. Trends Food Sci. Technol. 84, 7–11 (2018). https://doi.org/10.1016/j.tifs.2018.08.016

    Article  Google Scholar 

  22. Koubaa, M., Mhemdi, H., Fages, J.: Recovery of valuable components and inactivating microorganisms in the agro-food industry with ultrasound-assisted supercritical fluid technology. J. Supercrit. Fluids. 134, 71–79 (2018). https://doi.org/10.1016/j.supflu.2017.12.012

    Article  Google Scholar 

  23. Lindorfer, J., Lettner, M., Fazeni, K., Rosenfeld, D., Annevelink, B., Mandl, M.: Technical, economic and environmental assessment of biorefinery concepts. IEA Bioenergy. Paris, France (2019)

  24. Fermoso, F.G., Serrano, A., Alonso-Fariñas, B., Fernández-Bolaños, J., Borja, R., Rodríguez-Gutiérrez, G.: Valuable compound extraction, anaerobic digestion, and composting: A leading biorefinery approach for agricultural wastes. J. Agric. Food Chem. 66, 8451–8468 (2018). https://doi.org/10.1021/acs.jafc.8b02667

    Article  Google Scholar 

  25. Ferrari, G., Mustafa, W., Donsì, F.: Use of agri-food residues for oil structuring and functionalization. Chem. Eng. Trans. 57, 1831–1836 (2017). https://doi.org/10.3303/CET1757306

    Article  Google Scholar 

  26. Panzella, L., Moccia, F., Nasti, R., Marzorati, S., Verotta, L., Napolitano, A.: Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies. Front. Nutr. 7, 1–27 (2020). https://doi.org/10.3389/fnut.2020.00060

    Article  Google Scholar 

  27. Morais, E.S., Lopes, A.M., Freire, M.G., Coutinho, J.A.P., Silvestre, A.J.D.: Use of ionic liquids and deep eutectic solvents in polysaccharides dissolution and extraction processes towards sustainable biomass valorization. Molecules 25(16), 3652 (2020). https://doi.org/10.3390/molecules25163652

    Article  Google Scholar 

  28. Jablonský, M., Škulcová, A., Malvis, A., Šima, J.: Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J. Biotechnol. 282, 46–66 (2018). https://doi.org/10.1016/j.jbiotec.2018.06.349

    Article  Google Scholar 

  29. Florindo, C., Lima, F., Ribeiro, B.D., Marrucho, I.M.: Deep eutectic solvents: Overcoming 21st century challenges. Curr. Opin. Green Sustain. Chem. 18, 31–36 (2019)

    Article  Google Scholar 

  30. Zhang, Q., De Oliveira Vigier, K., Royer, S., Jérôme, F.: Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146 (2012). https://doi.org/10.1039/c2cs35178a

    Article  Google Scholar 

  31. Belwal, T., Chemat, F., Venskutonis, P.R., Cravotto, G., Jaiswal, D.K., Bhatt, I.D., Devkota, H.P., Luo, Z.: Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC Trends Anal. Chem. 127, 115895 (2020). https://doi.org/10.1016/j.trac.2020.115895

    Article  Google Scholar 

  32. Alexandre, E.M.C., Moreira, S.A., Castro, L.M.G., Pintado, M., Saraiva, J.A.: Emerging technologies to extract high added value compounds from fruit residues: Sub/supercritical, ultrasound-, and enzyme-assisted extractions. Food Rev. Int. 34, 581–612 (2018). https://doi.org/10.1080/87559129.2017.1359842

    Article  Google Scholar 

  33. Ferrentino, G., Asaduzzaman, M., Scampicchio, M.M.: Current technologies and new insights for the recovery of high valuable compounds from fruits by-products. Crit. Rev. Food Sci. Nutr. 8398, 1–19 (2016). https://doi.org/10.1080/10408398.2016.1180589

    Article  Google Scholar 

  34. Renard, C.M.G.C.: Extraction of bioactives from fruit and vegetables: State of the art and perspectives. LWT 93, 390–395 (2018)

    Article  Google Scholar 

  35. Stone, J., Garcia-Garcia, G., Rahimifard, S.: Selection of sustainable food waste valorisation routes: a case study with barley field residue. Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-019-00816-5

    Article  Google Scholar 

  36. Yu, I.K.M., Attard, T.M., Chen, S.S., Tsang, D.C.W., Hunt, A.J., Jérôme, F., Ok, Y.S., Poon, C.S.: Supercritical carbon dioxide extraction of value-added products and thermochemical synthesis of platform chemicals from food waste. ACS Sustain. Chem. Eng. 7, 2821–2829 (2019). https://doi.org/10.1021/acssuschemeng.8b06184

    Article  Google Scholar 

  37. Arshadi, M., Attard, T.M., Lukasik, R.M., Brncic, M., da Costa Lopes, A.M., Finell, M., Geladi, P., Gerschenson, L.N., Gogus, F., Herrero, M., Hunt, A.J., Ibáñez, E., Kamm, B., Mateos-Aparicio, I., Matias, A., Mavroudis, N.E., Montoneri, E., Morais, A.R.C., Nilsson, C., Papaioannou, E.H., Richel, A., Rupérez, P., Škrbić, B., Bodroža Solarov, M., Švarc-Gajić, J., Waldron, K.W., Yuste-Córdoba, F.J.: Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chem. 18, 6160–6204 (2016). https://doi.org/10.1039/C6GC01389A

  38. Zhang, J., Wen, C., Zhang, H., Duan, Y., Ma, H.: Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 95, 183–195 (2020). https://doi.org/10.1016/j.tifs.2019.11.018

    Article  Google Scholar 

  39. Carr, A.G., Mammucari, R., Foster, N.R.: A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J. 172, 1–17 (2011). https://doi.org/10.1016/J.CEJ.2011.06.007

    Article  Google Scholar 

  40. Ong, E.S., Cheong, J.S.H., Goh, D.: Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials. J. Chromatogr. A. 1112, 92–102 (2006). https://doi.org/10.1016/J.CHROMA.2005.12.052

    Article  Google Scholar 

  41. Ferrentino, G., Asaduzzaman, M., Scampicchio, M.M.: Current technologies and new insights for the recovery of high valuable compounds from fruits by-products. Crit. Rev. Food Sci. Nutr. 58, 386–404 (2018). https://doi.org/10.1080/10408398.2016.1180589

    Article  Google Scholar 

  42. Torres-Mayanga, P.C., Azambuja, S.P.H., Tyufekchiev, M., Tompsett, G.A., Timko, M.T., Goldbeck, R., Rostagno, M.A., Forster-Carneiro, T.: Subcritical water hydrolysis of brewer’s spent grains: Selective production of hemicellulosic sugars (C-5 sugars). J. Supercrit. Fluids. 145, 19–30 (2019). https://doi.org/10.1016/j.supflu.2018.11.019

    Article  Google Scholar 

  43. Lachos-Perez, D., Brown, A.B., Mudhoo, A., Timko, M.T., Rostagno, M.A., Forster-Carneiro, T.: Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: a critical review. Biofuel Res. J. 4, 611–626 (2017). https://doi.org/10.18331/BRJ2017.4.2.6

    Article  Google Scholar 

  44. Du, L., Arauzo, P.J., Meza Zavala, M.F., Cao, Z., Olszewski, M.P., Kruse, A.: Towards the properties of different biomass-derived proteins via various extraction methods. Molecules 25(3), 488 (2020). https://doi.org/10.3390/molecules25030488

    Article  Google Scholar 

  45. Todd, R., Baroutian, S.: A techno-economic comparison of subcritical water, supercritical CO2 and organic solvent extraction of bioactives from grape marc. J. Clean. Prod. 158, 349–358 (2017). https://doi.org/10.1016/j.jclepro.2017.05.043

    Article  Google Scholar 

  46. Chemat, F., Abert-Vian, M., Fabiano-Tixier, A.S., Strube, J., Uhlenbrock, L., Gunjevic, V., Cravotto, G.: Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends Anal. Chem. 118, 248–263 (2019). https://doi.org/10.1016/j.trac.2019.05.037

    Article  Google Scholar 

  47. Plaza, M., Marina, M.L.: Pressurized hot water extraction of bioactives. TrAC Trends Anal. Chem. 71, 39–54 (2019). https://doi.org/10.1016/j.trac.2019.03.024

    Article  Google Scholar 

  48. Grumezescu, A.M., Holban, A.M.: ingredients extraction by physicochemical methods in food. Hand Book Food Bioeng. 4, 1–638 (2017)

    Google Scholar 

  49. Wen, L., Zhang, Z., Sun, D.W., Sivagnanam, S.P., Tiwari, B.K.: Combination of emerging technologies for the extraction of bioactive compounds. Crit. Rev. Food Sci. Nutr. 60, 1826–1841 (2020). https://doi.org/10.1080/10408398.2019.1602823

    Article  Google Scholar 

  50. Gallo, M., Ferrara, L., Naviglio, D.: Applicationof ultrasound in food science and technology: A perspective. Foods 7(10), 164 (2018)

    Article  Google Scholar 

  51. Yammine, S., Brianceau, S., Manteau, S., Turk, M., Ghidossi, R., Vorobiev, E., Mietton-Peuchot, M.: Extraction and purification of high added value compounds from by-products of the winemaking chain using alternative/nonconventional processes/technologies. Crit. Rev. Food Sci. Nutr. 58, 1375–1390 (2018). https://doi.org/10.1080/10408398.2016.1259982

    Article  Google Scholar 

  52. Pingret, D., Fabiano-Tixier, A.-S., Bourvellec, C.L., Renard, C.M.G.C., Chemat, F.: Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. J. Food Eng. 111, 73–81 (2012). https://doi.org/10.1016/j.jfoodeng.2012.01.026

    Article  Google Scholar 

  53. Fritsch, C., Staebler, A., Happel, A., Márquez, M.A., Cubero, E., Aguiló-Aguayo, I., Abadias, M., Gallur, M., Cigognini, I.M., Montanari, A., López, M.J., Suárez-Estrella, F., Brunton, N., Luengo, E., Sisti, L., Ferri, M., Belotti, G.: Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: A review. Sustain 9, 1–46 (2017). https://doi.org/10.3390/su9081492

    Article  Google Scholar 

  54. Angiolillo, L., Del Nobile, M.A., Conte, A.: The extraction of bioactive compounds from food residues using microwaves. Curr. Opin. Food Sci. 5, 93–98 (2015). https://doi.org/10.1016/j.cofs.2015.10.001

    Article  Google Scholar 

  55. López-Linares, J.C., García-Cubero, M.T., Lucas, S., González-Benito, G., Coca, M.: Microwave assisted hydrothermal as greener pretreatment of brewer’s spent grains for biobutanol production. Chem. Eng. J. 368, 1045–1055 (2019). https://doi.org/10.1016/j.cej.2019.03.032

    Article  Google Scholar 

  56. Cristóbal, J., Caldeira, C., Corrado, S., Sala, S.: Techno-economic and profitability analysis of food waste biorefineries at European level. Bioresour. Technol. 259, 244–252 (2018). https://doi.org/10.1016/j.biortech.2018.03.016

    Article  Google Scholar 

  57. Volpe, M., Wüst, D., Merzari, F., Lucian, M., Andreottola, G., Kruse, A., Fiori, L.: One stage olive mill waste streams valorisation via hydrothermal carbonisation. Waste Manag. 80, 224–234 (2018). https://doi.org/10.1016/j.wasman.2018.09.021

    Article  Google Scholar 

  58. Trabold, T.A., Babbitt, C.W.: Sustainable food waste-to-energy systems. Elsevier, Cambridge (2018)

    Google Scholar 

  59. Akay, F., Kazan, A., Celiktas, M.S., Yesil-Celiktas, O.: A holistic engineering approach for utilization of olive pomace. J. Supercrit. Fluids. 99, 1–7 (2015). https://doi.org/10.1016/j.supflu.2015.01.025

    Article  Google Scholar 

  60. Santori, F.: Olive mill waste management in Italy waste management. (2014)

  61. Yedro, F.M., García-Serna, J., Cantero, D.A., Sobrón, F., Cocero, M.J.: Hydrothermal fractionation of grape seeds in subcritical water to produce oil extract, sugars and lignin. Catal. Today. 257, 160–168 (2015). https://doi.org/10.1016/j.cattod.2014.07.053

    Article  Google Scholar 

  62. Szymanska-Chargot, M., Chylinska, M., Gdula, K., Koziol, A., Zdunek, A.: Isolation and characterization of cellulose from different fruit and vegetable pomaces. Polymers 9, 495 (2017). https://doi.org/10.3390/polym9100495

    Article  Google Scholar 

  63. REFRESH H 2020 project: Food waste explorer. https://www.foodwasteexplorer.eu/home

  64. Benítez, J.J., Castillo, P.M., del Río, J.C., León-Camacho, M., Domínguez, E., Heredia, A., Guzmán-Puyol, S., Athanassiou, A., Heredia-Guerrero, J.A.: Valorization of tomato processing by-products: Fatty acid extraction and production of bio-based materials. Materials (Basel) 11, 2211 (2018). https://doi.org/10.3390/ma11112211

    Article  Google Scholar 

  65. Coman, V., Teleky, B.E., Mitrea, L., Martău, G.A., Szabo, K., Călinoiu, L.F., Vodnar, D.C.: Bioactive potential of fruit and vegetable wastes. Adv Food Nutr Res. 91, 157–225 (2020)

    Article  Google Scholar 

  66. Gullón, B., Falqué, E., Alonso, J.L., Parajó, J.C.: Evaluation of apple pomace as a raw material for alternative applications in food industries. Food Technol. Biotechnol. 45, 426–433 (2007)

    Google Scholar 

  67. El Achkar, J.H., Rohayem, C., Salameh, D., Louka, N., Maroun, R.G., Hobaika, Z.: Olive pomace, a source of green energy using anaerobic digestion. 2018 4th International Conference on Renewable Energies for Developing Countries (REDEC). 1–6 (2018). https://doi.org/10.1109/REDEC.2018.8598079

  68. Wang, L., Boussetta, N., Lebovka, N., Vorobiev, E.: Selectivity of ultrasound-assisted aqueous extraction of valuable compounds from flesh and peel of apple tissues. LWT. 93, 511–516 (2018). https://doi.org/10.1016/J.LWT.2018.04.007

    Article  Google Scholar 

  69. Wang, L., Boussetta, N., Lebovka, N., Vorobiev, E.: Effects of ultrasound treatment and concentration of ethanol on selectivity of phenolic extraction from apple pomace. Int. J. Food Sci. Technol. 53, 2104–2109 (2018). https://doi.org/10.1111/ijfs.13835

    Article  Google Scholar 

  70. Grassino, A.N., Brnčić, M., Vikić-Topić, D., Roca, S., Dent, M., Brnčić, S.R.: Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chem. 198, 93–100 (2016). https://doi.org/10.1016/j.foodchem.2015.11.095

    Article  Google Scholar 

  71. Thakur, B.R., Singh, R.K., Handa, A.K., Rao, M.A.: Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 37, 47–73 (1997). https://doi.org/10.1080/10408399709527767

    Article  Google Scholar 

  72. Lenucci, M.S., Durante, M., Anna, M., Dalessandro, G., Piro, G.: Possible use of the carbohydrates present in tomato pomace and in byproducts of the supercritical carbon dioxide lycopene extraction process as biomass for bioethanol production. J. Agric. Food Chem. 61, 3683–3692 (2013). https://doi.org/10.1021/jf4005059

    Article  Google Scholar 

  73. Gallina, G., Alfageme, E.R., Biasi, P., García-Serna, J.: Hydrothermal extraction of hemicellulose: From lab to pilot scale. Bioresour. Technol. 247, 980–991 (2018). https://doi.org/10.1016/j.biortech.2017.09.155

    Article  Google Scholar 

  74. Perussello, C.A., Zhang, Z., Marzocchella, A., Tiwari, B.K.: Valorization of apple pomace by extraction of valuable compounds. Compr. Rev. Food Sci. Food Saf. 16, 776–796 (2017). https://doi.org/10.1111/1541-4337.12290

    Article  Google Scholar 

  75. Marić, M., Grassino, A.N., Zhu, Z., Barba, F.J., Brnčić, M., Rimac Brnčić, S.: An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci. Technol. 76, 28–37 (2018). https://doi.org/10.1016/j.tifs.2018.03.022

    Article  Google Scholar 

  76. Yammine, S.: Extraction of high-value added compounds by subcritical water and fractionation by membrane processes : Valorization of vine and wine by-products by eco-innovative processe. (2016). https://tel.archives-ouvertes.fr/tel-01784959

  77. Duba, K.S., Casazza, A.A., Mohamed, H.B., Perego, P., Fiori, L.: Extraction of polyphenols from grape skins and defatted grape seeds using subcritical water: Experiments and modeling. Food Bioprod. Process. 94, 29–38 (2015). https://doi.org/10.1016/j.fbp.2015.01.001

    Article  Google Scholar 

  78. Naviglio, D., Caruso, T., Iannece, P., Aragòn, A., Santini, A.: Characterization of high purity lycopene from tomato wastes using a new pressurized extraction approach. J. Agric. Food Chem. 56, 6227–6231 (2008). https://doi.org/10.1021/jf703788c

    Article  Google Scholar 

  79. Zhu, L., Liu, Q., Li, Y., Tang, S.: Subcritical Water Extraction of Lycopene from Tomato Waste. Eng. Technol. Res. (2016)

  80. Jana, K., Ray, A., Majoumerd, M.M., Assadi, M., De, S.: Polygeneration as a future sustainable energy solution—A comprehensive review. Appl. Energy. 202, 88–111 (2017). https://doi.org/10.1016/j.apenergy.2017.05.129

    Article  Google Scholar 

  81. Izydorczyk, G., Skrzypczak, D., Kocek, D., Mironiuk, M., Witek-Krowiak, A., Moustakas, K., Chojnacka, K.: Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets. Energy 194, 116898 (2020). https://doi.org/10.1016/j.energy.2020.116898

    Article  Google Scholar 

  82. Serrano, A., Fermoso, F.G., Alonso-Fariñas, B., Rodríguez-Gutierrez, G., Fernandez-Bolaños, J., Borja, R.: Olive mill solid waste biorefinery: High-temperature thermal pre-treatment for phenol recovery and biomethanization. J. Clean. Prod. 148, 314–323 (2017). https://doi.org/10.1016/j.jclepro.2017.01.152

    Article  Google Scholar 

  83. Serrano, A., Fermoso, F.G., Alonso-Fariñas, B., Rodríguez-Gutierrez, G., Fernandez-Bolaños, J., Borja, R.: Phenols recovery after steam explosion of olive mill solid waste and its influence on a subsequent biomethanization process. Bioresour. Technol. 243, 169–178 (2017). https://doi.org/10.1016/j.biortech.2017.06.093

    Article  Google Scholar 

  84. Bhatia, S.K., Joo, H.S., Yang, Y.H.: Biowaste-to-bioenergy using biological methods—A mini-review. Energy Convers. Manag. 177, 640–660 (2018). https://doi.org/10.1016/j.enconman.2018.09.090

    Article  Google Scholar 

  85. Anukam, A., Mohammadi, A., Naqvi, M., Granström, K.: A review of the chemistry of anaerobic digestion: methods of accelerating and optimizing process efficiency. Processes 7, 504 (2019). https://doi.org/10.3390/pr7080504

    Article  Google Scholar 

  86. Fagbohungbe, M.O., Herbert, B.M.J., Hurst, L., Ibeto, C.N., Li, H., Usmani, S.Q., Semple, K.T.: The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manag. 61, 236–249 (2017). https://doi.org/10.1016/J.WASMAN.2016.11.028

    Article  Google Scholar 

  87. Xu, F., Li, Y., Ge, X., Yang, L., Li, Y.: Anaerobic digestion of food waste—Challenges and opportunities. Bioresour. Technol. 247, 1047–1058 (2018). https://doi.org/10.1016/J.BIORTECH.2017.09.020

    Article  Google Scholar 

  88. Ebner, J.H., Hegde, S., Win, S.S., Babbitt, C.W., Trabold, T.A.: Environmental Aspects of Food Waste-to-Energy Conversion. Elsevier Inc., Netherlands (2018)

    Book  Google Scholar 

  89. Dale, B.: Time to rethink cellulosic biofuels? Biofuels. Bioprod. Biorefining. 12, 5–7 (2018). https://doi.org/10.1002/bbb.1856

    Article  Google Scholar 

  90. Valdivia, M., Galan, J.L., Laffarga, J., Ramos, J.-L.: Biofuels 2020: Biorefineries based on lignocellulosic materials. Microb. Biotechnol. 9, 585–594 (2016). https://doi.org/10.1111/1751-7915.12387

    Article  Google Scholar 

  91. Bellido, C., Lucas, S., González-Benito, G., García-Cubero, M.T., Coca, M.: Synergistic positive effect of organic acids on the inhibitory effect of phenolic compounds on Acetone-Butanol-Ethanol (ABE) production. Food Bioprod. Process. 108, 117–125 (2018). https://doi.org/10.1016/j.fbp.2018.02.004

    Article  Google Scholar 

  92. De Buck, V., Polanska, M., Van Impe, J.: Modeling biowaste biorefineries: A review. (2020)

  93. Wang, T., Zhai, Y., Zhu, Y., Li, C., Zeng, G.: A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev 90, 223–247 (2018)

    Article  Google Scholar 

  94. Savage, P.E.: Organic chemical reactions in supercritical water. Chem. Rev. 99, 603–622 (1999)

    Article  Google Scholar 

  95. Suárez, L., Benavente-Ferraces, I., Plaza, C., de Pascual-Teresa, S., Suárez-Ruiz, I., Centeno, T.A.: Hydrothermal carbonization as a sustainable strategy for integral valorisation of apple waste. Bioresour. Technol. 309, 123395 (2020). https://doi.org/10.1016/j.biortech.2020.123395

    Article  Google Scholar 

  96. Kambo, H.S., Dutta, A.: Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl. Energy. 135, 182–191 (2014)

    Article  Google Scholar 

  97. Basso, D., Patuzzi, F., Castello, D., Baratieri, M., Rada, E.C., Weiss-Hortala, E., Fiori, L.: Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manag. 47, 114–121 (2016)

    Article  Google Scholar 

  98. Fiori, L., Basso, D., Castello, D., Baratieri, M.: Hydrothermal carbonization of biomass: Design of a batch reactor and preliminary experimental results. Chem. Eng. Trans. 37, 55 (2014)

    Google Scholar 

  99. Kantarli, I.C., Kabadayi, A., Ucar, S., Yanik, J.: Conversion of poultry wastes into energy feedstocks. Waste Manag. 56, 530–539 (2016)

    Article  Google Scholar 

  100. Saetea, P., Tippayawong, N.: Recovery of value-added products from hydrothermal carbonization of sewage sludge. ISRN Chem. Eng. 2013, 6 (2013)

    Article  Google Scholar 

  101. Zhang, B., Heidari, M., Regmi, B., Salaudeen, S., Arku, P., Thimmannagari, M., Dutta, A.: Hydrothermal carbonization of fruit wastes: A promising technique for generating hydrochar. Energies (2018). https://doi.org/10.3390/en11082022

    Article  Google Scholar 

  102. Sevilla, M., Fuertes, A.B.: The production of carbon materials by hydrothermal carbonization of cellulose. Carbon N. Y. 47, 2281–2289 (2009)

    Article  Google Scholar 

  103. Parshetti, G.K., Hoekman, S.K., Balasubramanian, R.: Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresour. Technol. 135, 683–689 (2013)

    Article  Google Scholar 

  104. Xiu, S., Shahbazi, A., Shirley, V., Cheng, D.: Hydrothermal pyrolysis of swine manure to bio-oil: Effects of operating parameters on products yield and characterization of bio-oil. J. Anal. Appl. Pyrolysis. 88, 73–79 (2010)

    Article  Google Scholar 

  105. Usman, M., Chen, H., Chen, K., Ren, S., Clark, J.H., Fan, J., Luo, G., Zhang, S.: Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production: A review. Green Chem. 21, 1553–1572 (2019). https://doi.org/10.1039/c8gc03957g

    Article  Google Scholar 

  106. Liu, Z., Quek, A., Hoekman, S.K., Balasubramanian, R.: Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103, 943–949 (2013)

    Article  Google Scholar 

  107. Lucian, M., Volpe, M., Fiori, L.: Hydrothermal carbonization kinetics of lignocellulosic agro-wastes: Experimental data and modeling. Energies 12(3), 516 (2019). https://doi.org/10.3390/en12030516

    Article  Google Scholar 

  108. Fan, F., Yang, Z., Li, H., Shi, Z., Kan, H.: Preparation and properties of hydrochars from macadamia nut shell via hydrothermal carbonization. R. Soc. Open Sci. 5, 181126 (2018)

    Article  Google Scholar 

  109. Hoekman, S.K., Broch, A., Robbins, C.: Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 25, 1802–1810 (2011)

    Article  Google Scholar 

  110. Yang, X., Kang, K., Qiu, L., Zhao, L., Sun, R.: Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches. Renew. Energy 146, 1691–1699 (2020). https://doi.org/10.1016/j.renene.2019.07.148

    Article  Google Scholar 

  111. Van Krevelen, D.: Graphical statistical method for the study of structure and reaction processes of coal. Fuel 29, 269–284 (1950)

    Google Scholar 

  112. Calucci, L., Rasse, D.P., Forte, C.: Solid-state nuclear magnetic resonance characterization of chars obtained from hydrothermal carbonization of corncob and miscanthus. Energy Fuels 27, 303–309 (2013)

    Article  Google Scholar 

  113. Zhao, P., Chen, H., Ge, S., Yoshikawa, K.: Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion. Appl. Energy. 111, 199–205 (2013)

    Article  Google Scholar 

  114. Lee, J., Lee, K., Sohn, D., Kim, Y.M., Park, K.Y.: Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel. Energy 153, 913–920 (2018). https://doi.org/10.1016/j.energy.2018.04.112

    Article  Google Scholar 

  115. Heidari, M., Salaudeen, S., Norouzi, O., Acharya, B., Dutta, A.: Numerical comparison of a combined hydrothermal carbonization and anaerobic digestion system with direct combustion of biomass for power production. Processes 8(1), 43 (2020). https://doi.org/10.3390/pr8010043

    Article  Google Scholar 

  116. Guardia, L., Suárez, L., Querejeta, N., Rodríguez Madrera, R., Suárez, B., Centeno, T.A.: Apple waste: A sustainable source of carbon materials and valuable compounds. ACS Sustain. Chem. Eng. 7, 17335–17343 (2019). https://doi.org/10.1021/acssuschemeng.9b04266

    Article  Google Scholar 

  117. Zhao, K., Li, Y., Zhou, Y., Guo, W., Jiang, H., Xu, Q.: Characterization of hydrothermal carbonization products (hydrochars and spent liquor) and their biomethane production performance. Bioresour. Technol. 267, 9–16 (2018). https://doi.org/10.1016/j.biortech.2018.07.006

    Article  Google Scholar 

  118. Lucian, M., Volpe, M., Merzari, F., Wüst, D., Kruse, A., Andreottola, G., Fiori, L.: Hydrothermal carbonization coupled with anaerobic digestion for the valorization of the organic fraction of municipal solid waste. Bioresour. Technol. 314, 123734 (2020). https://doi.org/10.1016/j.biortech.2020.123734

    Article  Google Scholar 

  119. Fang, J., Zhan, L., Ok, Y.S., Gao, B.: Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J. Ind. Eng. Chem. 57, 15–21 (2018)

    Article  Google Scholar 

  120. Belete, Y.Z., Leu, S., Boussiba, S., Zorin, B., Posten, C., Thomsen, L., Wang, S., Gross, A., Bernstein, R.: Characterization and utilization of hydrothermal carbonization aqueous phase as nutrient source for microalgal growth. Bioresour. Technol. 290, 121758 (2019). https://doi.org/10.1016/j.biortech.2019.121758

    Article  Google Scholar 

  121. Tran, T.T.V., Kaiprommarat, S., Kongparakul, S., Reubroycharoen, P., Guan, G., Nguyen, M.H., Samart, C.: Green biodiesel production from waste cooking oil using an environmentally benign acid catalyst. Waste Manag. 52, 367–374 (2016). https://doi.org/10.1016/j.wasman.2016.03.053

    Article  Google Scholar 

  122. Ravindran, R., Jaiswal, A.K.: Exploitation of food industry waste for high-value products. (2016)

  123. Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof, B., Worley, M., Sexton, D., Dudgeon, D.: Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: Dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Natl. Renew. Energy Lab. 1–147 (2011). https://doi.org/10.2172/1107470

  124. Greiserman, S., Epstein, M., Chemodanov, A., Steinbruch, E., Prabhu, M., Guttman, L., Jinjikhashvily, G., Shamis, O., Gozin, M., Kribus, A., Golberg, A.: Co-production of monosaccharides and hydrochar from green macroalgae Ulva (Chlorophyta) sp. with subcritical hydrolysis and carbonization. Bioenergy Res. 12, 1090–1103 (2019). https://doi.org/10.1007/s12155-019-10034-5

    Article  Google Scholar 

  125. Maciel-Silva, F.W., Mussatto, S.I., Forster-Carneiro, T.: Integration of subcritical water pretreatment and anaerobic digestion technologies for valorization of açai processing industries residues. J. Clean. Prod. 228, 1131–1142 (2019). https://doi.org/10.1016/j.jclepro.2019.04.362

    Article  Google Scholar 

  126. Paini, J., Benedetti, V., Ferrentino, G., Baratieri, M., Patuzzi, F.: Thermochemical conversion of apple seeds before and after supercritical CO2 extraction: An assessment through evolved gas analysis. Biomass Convers. Biorefinery. (2020). https://doi.org/10.1007/s13399-020-00858-z

    Article  Google Scholar 

  127. Attard, T.M., Bukhanko, N., Eriksson, D., Arshadi, M., Geladi, P., Bergsten, U., Budarin, V.L., Clark, J.H., Hunt, A.J.: Supercritical extraction of waxes and lipids from biomass: A valuable first step towards an integrated biorefinery. J. Clean. Prod. 177, 684–698 (2018). https://doi.org/10.1016/j.jclepro.2017.12.155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco J. Castaldi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paini, J., Benedetti, V., Ail, S.S. et al. Valorization of Wastes from the Food Production Industry: A Review Towards an Integrated Agri-Food Processing Biorefinery. Waste Biomass Valor 13, 31–50 (2022). https://doi.org/10.1007/s12649-021-01467-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01467-1

Keywords

Navigation