Skip to main content

Advertisement

Log in

Processes for the valorization of food and agricultural wastes to value-added products: recent practices and perspectives

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Biorefineries contribute to a circular bioeconomy using renewable feedstock to produce commodity and specialty chemicals as an alternative to petroleum chemicals. Using waste streams such as food waste and agricultural waste as a feedstock for biorefineries is a promising approach for obtaining value-added products in an economically feasible and sustainable way. The conversion of biomass to chemicals offers diverse opportunities but poses new technological challenges. This paper aims to review the current state of food and agricultural waste valorisation by giving a brief technical overview, summarizing the current state of the bio-based market, and identifying the current barriers to scaling-up biorefineries. Utilizing lignocellulosic biomass in biorefineries calls for pre-treatment due to its complex structure, in which biomass is broken into monosaccharides, building blocks of value-added products. Different state of the art technologies for lignocellulose pre-treatment is introduced in the review followed by a brief explanation of the role of the hydrolysis and fermentation. The economic aspect of chemical production from biomass waste at an industrial scale is also introduced by giving an overview of some recent techno-economic studies.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Takkellapati S, Li T, Gonzalez MA. An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol Environ Policy. 2018;20:1615–30. https://doi.org/10.1007/s10098-018-1568-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Jong E, Stichnothe H, Bell G, Henning Jørgensen M, et al. Bio-based chemicals: a 2020 update. IEA Bioenergy. 2020;1:1–28.

    Google Scholar 

  3. Kohli K, Prajapati R, Sharma B. Bio-based chemicals from renewable biomass for integrated biorefineries. Energies. 2019;12:233.

    Article  CAS  Google Scholar 

  4. FAO (Food and Agriculture Organization of the United Nations). Food wastage footprint: impacts on natural resources: Summary report. Rome: FAO, 2013.

  5. Xiong X, Yu IKM, Tsang DCW, Bolan NS, Sik Ok Y, Igalavithana AD, et al. Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chem Eng J. 2019;375: 121983. https://doi.org/10.1016/j.cej.2019.121983.

    Article  CAS  Google Scholar 

  6. Mohammed NI, Kabbashi N, Alade A. Significance of agricultural residues in sustainable biofuel development. In: Aladjadjiyan A editor. Agricultural waste and residues. Rijeka: IntechOpen; 2018. p. 71–88.

  7. Cherubin MR, Oliveira DMDS, Feigl BJ, Pimentel LG, Lisboa IP, Gmach MR, et al. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Sci. Agric. 2018;255–72. https://doi.org/10.1590/1678-992x-2016-0459.

  8. Cherubini F, Strømman A. Principles of biorefining. In: Biofuels: alternative feedstocks and conversion processes. 2011; pp. 3–24.

  9. Somerville C, Youngs H, Taylor C, Davis S, Long S. Feedstocks for lignocellulosic fuels. Science. 2010;329:790–2.

    Article  CAS  Google Scholar 

  10. Kawaguchi H, Hasunuma T, Ogino C, Kondo A. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol. 2016;42:30–9. https://doi.org/10.1016/j.copbio.2016.02.031.

    Article  CAS  PubMed  Google Scholar 

  11. Pandey MP, Kim CS. Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol. 2011;34:29–41. https://doi.org/10.1002/ceat.201000270.

    Article  CAS  Google Scholar 

  12. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink V. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels. 2012;5:45. https://doi.org/10.1186/1754-6834-5-45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gómez Millán G, Hellsten S, Llorca J, Luque R, Sixta H, Balu AM. Recent advances in the catalytic production of platform chemicals from holocellulosic biomass. ChemCatChem. 2019;11:2022–42. https://doi.org/10.1002/cctc.201801843.

    Article  CAS  Google Scholar 

  14. Lu K, Hao N, Meng X, Luo Z, Tuskan GA, Ragauskas AJ. Investigating the correlation of biomass recalcitrance with pyrolysis oil using poplar as the feedstock. Bioresour Technol. 2019;289: 121589. https://doi.org/10.1016/j.biortech.2019.121589.

    Article  CAS  PubMed  Google Scholar 

  15. Meng X, Pu Y, Yoo CG, Li M, Bali G, Park D-Y, et al. An in-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock. Chemsuschem. 2017;10:139–50. https://doi.org/10.1002/cssc.201601303.

    Article  CAS  PubMed  Google Scholar 

  16. Li M, Pu Y, Ragauskas AJ. Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem. 2016;4:45. https://doi.org/10.3389/fchem.2016.00045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou C-H, Xia X, Lin C-X, Tong D-S, Beltramini J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev. 2011;40:5588–617.

    Article  CAS  Google Scholar 

  18. Scarlat N, Dallemand J-F, Monforti-Ferrario F, Nita V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ Dev. 2015;15:3–34. https://doi.org/10.1016/j.envdev.2015.03.006.

    Article  Google Scholar 

  19. Werpy T, Petersen G. Top value added chemicals from biomass: results of screening for potential candidates from sugars and synthesis gas, United States Department of Energy. Pacific Northwest National Laboratory/US Department of Energy: Oak Ridge, TN; 2004. https://doi.org/10.2172/15008859.

    Book  Google Scholar 

  20. Isikgor F, Becer R. Lignocellulosic biomass: a sustainable platform for production of bio-based chemicals and polymers. Polym Chem. 2015. https://doi.org/10.1039/C5PY00263J.

    Article  Google Scholar 

  21. Jang Y-S, Kim B, Shin JH, Choi YJ, Choi S, Song CW, et al. Bio-based production of C2–C6 platform chemicals. Biotechnol Bioeng. 2012;109:2437–59. https://doi.org/10.1002/bit.24599.

    Article  CAS  PubMed  Google Scholar 

  22. Cajnko MM, Novak U, Grilc M, Likozar B. Enzymatic conversion reactions of 5-hydroxymethylfurfural (HMF) to bio-based 2,5-diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA) with air: Mechanisms, pathways and synthesis selectivity. Biotechnol Biofuels. 2020;13:1–11. https://doi.org/10.1186/s13068-020-01705-z.

    Article  CAS  Google Scholar 

  23. Yang C-F, Huang C-R. Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate. Bioresour Technol. 2016;214:311–8. https://doi.org/10.1016/j.biortech.2016.04.122.

    Article  CAS  PubMed  Google Scholar 

  24. Hossain GS, Yuan H, Li J, Shin H-D, Wang M, Du G, Chen J, Liu L. Metabolic engineering of Raoultella ornithinolytica BF60 for production of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural. Appl Environ Microbiol. 2017;83:e02312–6. https://doi.org/10.1128/AEM.02312-16.

  25. Yuan H, Li J, Shin H dong, Du G, Chen J, Shi Z, et al. Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60. Bioresour Technol. 2018;247:1184–8. https://doi.org/10.1016/j.biortech.2017.08.166

  26. Sajid M, Zhao X, Liu D. Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): Recent progress focusing on the chemical-catalytic routes. Green Chem. 2018;20:5427–53.

    Article  CAS  Google Scholar 

  27. Kwan TH, Hu Y, Lin CSK. Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly(lactic acid) production. J Clean Prod. 2018;181:72–87. https://doi.org/10.1016/j.jclepro.2018.01.179.

    Article  CAS  Google Scholar 

  28. Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv. 2013;31:877–902. https://doi.org/10.1016/j.biotechadv.2013.04.002.

    Article  CAS  PubMed  Google Scholar 

  29. Huang H-J, Ramaswamy S, Tschirner UW, Ramarao BV. A review of separation technologies in current and future biorefineries. Sep Purif Technol. 2008;62:1–21. https://doi.org/10.1016/j.seppur.2007.12.011.

    Article  CAS  Google Scholar 

  30. Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF. Lactic acid as a platform chemical in the biobased economy: The role of chemocatalysis. Energy Environ Sci. 2013;6:1415–42. https://doi.org/10.1039/C3EE00069A.

    Article  CAS  Google Scholar 

  31. Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications: a comprehensive review. Adv Drug Deliv Rev. 2016;107:367–92. https://doi.org/10.1016/j.addr.2016.06.012.

    Article  CAS  PubMed  Google Scholar 

  32. Castillo Martinez FA, Balciunas EM, Salgado JM, Domínguez González JM, Converti A, Oliveira RP de S. Lactic acid properties, applications and production: A review. Trends Food Sci Technol. 2013;30:70–83. https://doi.org/10.1016/j.tifs.2012.11.007

  33. Sawai H, Na K, Sasaki N, Mimitsuka T, Minegishi SI, Henmi M, et al. Membrane-integrated fermentation system for improving the optical purity of D-lactic acid produced during continuous fermentation. Biosci Biotechnol Biochem. 2011;75:2326–32. https://doi.org/10.1271/bbb.110486.

    Article  CAS  PubMed  Google Scholar 

  34. Kumar A, Thakur A, Panesar PS. Lactic acid and its separation and purification techniques: A review. Rev Environ Sci Biotechnol. 2019;18:823–53. https://doi.org/10.1007/s11157-019-09517-w.

  35. Komesu A, Maciel MRW, Maciel FR. Separation and purification technologies for lactic acid–A brief review. BioResources. 2017;12:6885–901.

    Article  CAS  Google Scholar 

  36. Kwan TH, Hu Y, Lin CSK. Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota. Bioresour Technol. 2016;217:129–36. https://doi.org/10.1016/j.biortech.2016.01.134.

    Article  CAS  PubMed  Google Scholar 

  37. Cha JS, Um BH. Levulinic acid production through two-step acidic and thermal treatment of food waste using dilute hydrochloric acid. Korean J Chem Eng. 2020;37:1149–56. https://doi.org/10.1007/s11814-020-0521-6.

    Article  CAS  Google Scholar 

  38. Mukherjee A, Dumont M-J, Raghavan V. Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass Bioenerg. 2015;72:143–83. https://doi.org/10.1016/j.biombioe.2014.11.007.

    Article  CAS  Google Scholar 

  39. Dutta S, Yu IKM, Tsang DCW, Ng YH, Ok YS, Sherwood J, et al. Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chem Eng J. 2019;372:992–1006. https://doi.org/10.1016/j.cej.2019.04.199.

    Article  CAS  Google Scholar 

  40. Schmidt LM, Mthembu LD, Reddy P, Deenadayalu N, Kaltschmitt M, Smirnova I. Levulinic acid production integrated into a sugarcane bagasse based biorefinery using thermal-enzymatic pre-treatment. Ind Crops Prod. 2017;99:172–8. https://doi.org/10.1016/j.indcrop.2017.02.010.

    Article  CAS  Google Scholar 

  41. Cao L, Yu IKM, Cho DW, Wang D, Tsang DCW, Zhang S, et al. Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar. Bioresour Technol. 2019;273:251–8. https://doi.org/10.1016/j.biortech.2018.11.013.

    Article  CAS  PubMed  Google Scholar 

  42. Yu IKM, Tsang DCW, Yip ACK, Chen SS, Wang L, Ok YS, et al. Catalytic valorisation of starch-rich food waste into hydroxymethylfurfural (HMF): Controlling relative kinetics for high productivity. Bioresour Technol. 2017;237:222–30. https://doi.org/10.1016/j.biortech.2017.01.017.

    Article  CAS  PubMed  Google Scholar 

  43. Yu IKM, Tsang DCW. Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresour Technol. 2017;238:716–32. https://doi.org/10.1016/j.biortech.2017.04.026.

    Article  CAS  PubMed  Google Scholar 

  44. Cao L, Yu IKM, Chen SS, Tsang DCW, Wang L, Xiong X, et al. Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. Bioresour Technol. 2018;252:76–82. https://doi.org/10.1016/j.biortech.2017.12.098.

    Article  CAS  PubMed  Google Scholar 

  45. García B, Moreno J, Iglesias J, Melero JA, Morales G. Transformation of glucose into sorbitol on raney nickel catalysts in the absence of molecular hydrogen: sugar disproportionation vs catalytic hydrogen transfer. Top Catal. 2019;62:570–8. https://doi.org/10.1007/s11244-019-01156-3.

    Article  CAS  Google Scholar 

  46. Zada B, Chen M, Chen C, Yan L, Xu Q, Li W, et al. Recent advances in catalytic production of sugar alcohols and their applications. Sci China Chem. 2017;60:853–69. https://doi.org/10.1007/s11426-017-9067-1.

    Article  CAS  Google Scholar 

  47. Dasgupta D, Bandhu S, Adhikari DK, Ghosh D. Challenges and prospects of xylitol production with whole cell bio-catalysis: A review. Microbiol Res. 2017;197:9–21. https://doi.org/10.1016/j.micres.2016.12.012.

    Article  CAS  PubMed  Google Scholar 

  48. Felipe Hernández-Pérez A, de Arruda PV, Sene L, da Silva SS, Kumar Chandel A, de Almeida Felipe MdG. Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Crit Rev Biotechnol. 2019;39:924–43. https://doi.org/10.1080/07388551.2019.1640658.

  49. Morales M, Ataman M, Badr S, Linster S, Kourlimpinis I, Papadokonstantakis S, et al. Sustainability assessment of succinic acid production technologies from biomass using metabolic engineering. Energy Environ Sci. 2016;9:2794–805. https://doi.org/10.1039/C6EE00634E.

    Article  CAS  Google Scholar 

  50. Li C, Ong KL, Cui Z, Sang Z, Li X, Patria RD, et al. Promising advancement in fermentative succinic acid production by yeast hosts. J Hazard Mater. 2021;401: 123414. https://doi.org/10.1016/j.jhazmat.2020.123414.

    Article  CAS  PubMed  Google Scholar 

  51. Mancini E, Mansouri SS, Gernaey KV, Luo J, Pinelo M. From second generation feed-stocks to innovative fermentation and downstream techniques for succinic acid production. Crit Rev Environ Sci Technol. 2020;50:1829–73. https://doi.org/10.1080/10643389.2019.1670530.

    Article  CAS  Google Scholar 

  52. Bulushev DA, Ross JRH. Towards Sustainable Production of Formic Acid. Chemsuschem. 2018;11:821–36. https://doi.org/10.1002/cssc.201702075.

    Article  CAS  PubMed  Google Scholar 

  53. Ding K, Le Y, Yao G, Ma Z, Jin B, Wang J, et al. A rapid and efficient hydrothermal conversion of coconut husk into formic acid and acetic acid. Process Biochem. 2018;68:131–5. https://doi.org/10.1016/j.procbio.2018.02.021.

    Article  CAS  Google Scholar 

  54. Chen SS, Yu IKM, Tsang DCW, Yip ACK, Khan E, Wang L, et al. Valorisation of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: Temperature and solvent effects. Chem Eng J. 2017;327:328–35. https://doi.org/10.1016/j.cej.2017.06.108.

    Article  CAS  Google Scholar 

  55. Kazi FK, Patel AD, Serrano-Ruiz JC, Dumesic JA, Anex RP. Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chem Eng J. 2011;169:329–38. https://doi.org/10.1016/j.cej.2011.03.018.

    Article  CAS  Google Scholar 

  56. Davis SE, Zope BN, Davis RJ. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts. Green Chem. 2012;14:143–7. https://doi.org/10.1039/C1GC16074E.

    Article  CAS  Google Scholar 

  57. Triebl C, Nikolakis V, Ierapetritou M. Simulation and economic analysis of 5-hydroxymethylfurfural conversion to 2,5-furandicarboxylic acid. Comput Chem Eng. 2013;52:26–34. https://doi.org/10.1016/j.compchemeng.2012.12.005.

    Article  CAS  Google Scholar 

  58. Matharu A, Houghton J, Lucas-Torres C, Moreno A. Acid-free microwave-assisted hydrothermal extraction of pectin and porous cellulose from mango peel waste : towards a zero waste mango biorefinery. Green Chem. 2016;18:5280–87.

    Article  CAS  Google Scholar 

  59. Jha A, Kumar A. Biobased technologies for the efficient extraction of biopolymers from waste biomass. Bioprocess Biosyst Eng. 2019;42:1893–901. https://doi.org/10.1007/s00449-019-02199-2.

    Article  CAS  PubMed  Google Scholar 

  60. Liu J, Willför S, Xu C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioact Carbohydrates Diet Fibre. 2015;5:31–61. https://doi.org/10.1016/j.bcdf.2014.12.001.

    Article  CAS  Google Scholar 

  61. Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects: A review. J Funct Foods. 2015;18:820–97. https://doi.org/10.1016/j.jff.2015.06.018.

    Article  CAS  Google Scholar 

  62. Lin CSK, Pfaltzgraff LA, Herrero Davila L, Mubofu EB, Solhy A, Clark JH, et al. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci. 2013;6:426–64. https://doi.org/10.1039/C2EE23440H.

    Article  CAS  Google Scholar 

  63. Marić M, Grassino AN, Zhu Z, Barba FJ, Brnčić M, Rimac BS. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci Technol. 2018;76:28–37. https://doi.org/10.1016/j.tifs.2018.03.022.

    Article  CAS  Google Scholar 

  64. RedCorn R, Fatemi S, Engelberth AS. Comparing End-Use Potential for Industrial Food-Waste Sources. Engineering. 2018;4:371–80. https://doi.org/10.1016/j.eng.2018.05.010.

    Article  CAS  Google Scholar 

  65. Banerjee J, Singh R, Vijayaraghavan R, MacFarlane D, Patti AF, Arora A. A hydrocolloid based biorefinery approach to the valorisation of mango peel waste. Food Hydrocoll. 2018;77:142–51. https://doi.org/10.1016/j.foodhyd.2017.09.029.

    Article  CAS  Google Scholar 

  66. Banerjee J, Vijayaraghavan R, Arora A, MacFarlane DR, Patti AF. Lemon juice based extraction of pectin from mango peels: waste to wealth by sustainable approaches. ACS Sustain Chem Eng. 2016;4:5915–20. https://doi.org/10.1021/acssuschemeng.6b01342.

    Article  CAS  Google Scholar 

  67. Shahram H, Dinani ST. Optimization of ultrasonic-assisted enzymatic extraction of β-carotene from orange processing waste. J Food Process Eng. 2019;42:1–16. https://doi.org/10.1111/jfpe.13042.

    Article  CAS  Google Scholar 

  68. Fernando S, Adhikari S, Chandrapal C, Murali N. Biorefineries: Current status, challenges, and future direction. Energy Fuels. 2006;20:1727–37. https://doi.org/10.1021/ef060097w.

    Article  CAS  Google Scholar 

  69. Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for Pre-treatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind Eng Chem Res. 2009;48:3713–29. https://doi.org/10.1021/ie801542g.

    Article  CAS  Google Scholar 

  70. Yat SC, Berger A, Shonnard DR. Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass. Bioresour Technol. 2008;99:3855–63. https://doi.org/10.1016/j.biortech.2007.06.046.

    Article  CAS  PubMed  Google Scholar 

  71. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. Features of promising technologies for pre-treatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673–86. https://doi.org/10.1016/j.biortech.2004.06.025.

    Article  CAS  PubMed  Google Scholar 

  72. Duque A, Manzanares P, Ballesteros I, Ballesteros M. Chapter 15 - Steam explosion as lignocellulosic biomass Pre-treatment. In: Mussatto SI, editor. Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Amsterdam: Elsevier; 2016. p. 349–68.

    Chapter  Google Scholar 

  73. Sarkar O, Butti SK, Mohan SV. Acidogenic biorefinery: food waste valorisation to biogas and platform chemicals. Waste Biorefinery. 2018. https://doi.org/10.1016/B978-0-444-63992-9.00006-9.

    Article  Google Scholar 

  74. Hammerer F, Ostadjoo S, Dietrich K, Dumont M-J, Del Rio LF, Friščić T, et al. Rapid mechanoenzymatic saccharification of lignocellulosic biomass without bulk water or chemical pre-treatment. Green Chem. 2020;22:3877–84. https://doi.org/10.1039/D0GC00903B.

    Article  CAS  Google Scholar 

  75. Ponnusamy VK, Nguyen DD, Dharmaraja J, Shobana S, Banu JR, Saratale RG, et al. A review on lignin structure, pre-treatments, fermentation reactions and biorefinery potential. Bioresour Technol. 2019;271:462–72. https://doi.org/10.1016/j.biortech.2018.09.070.

    Article  CAS  PubMed  Google Scholar 

  76. Liu X, Liu H, Yan P, Mao L, Xu Z, Zhang ZC. Mechanocatalytic synergy for expedited cellulosic ethanol production compatible with integrated biorefinery. ACS Sustain Chem Eng. Am Chem Soc. 2020;8:2399–408. https://doi.org/10.1021/acssuschemeng.9b06018.

    Article  CAS  Google Scholar 

  77. Hammerer F, Loots L, Do J-L, Therien JPD, Nickels CW, Friščić T, et al. Solvent-free enzyme activity: quick, high-yielding mechanoenzymatic hydrolysis of cellulose into glucose. Angew Chemie Int Ed. 2018;57:2621–4. https://doi.org/10.1002/anie.201711643.

    Article  CAS  Google Scholar 

  78. Gatt E, Khatri V, Bley J, Barnabé S, Vandenbossche V, Beauregard M. Enzymatic hydrolysis of corn crop residues with high solid loadings: New insights into the impact of bioextrusion on biomass deconstruction using carbohydrate-binding modules. Bioresour Technol. 2019;282:398–406. https://doi.org/10.1016/j.biortech.2019.03.045.

    Article  CAS  PubMed  Google Scholar 

  79. Kristensen JB, Felby C, Jørgensen H. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels. 2009;2:11. https://doi.org/10.1186/1754-6834-2-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rahikainen J, Mattila O, Maloney T, Lovikka V, Kruus K, Suurnäkki A, et al. High consistency mechano-enzymatic pre-treatment for kraft fibres: effect of treatment consistency on fibre properties. Cellulose. 2020;27:5311–22. https://doi.org/10.1007/s10570-020-03123-8.

    Article  CAS  Google Scholar 

  81. Kaabel S, Friščić T, Auclair K. Mechanoenzymatic transformations in the absence of bulk water: a more natural way of using enzymes. ChemBioChem. 2020;21:742–58. https://doi.org/10.1002/cbic.201900567.

    Article  CAS  PubMed  Google Scholar 

  82. Pino MS, Rodríguez-Jasso RM, Michelin M, Flores-Gallegos AC, Morales-Rodriguez R, Teixeira JA, et al. Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chem Eng J. 2018;347:119–36. https://doi.org/10.1016/j.cej.2018.04.057.

    Article  CAS  Google Scholar 

  83. Esteban J, Ladero M. Food waste as a source of value-added chemicals and materials: a biorefinery perspective. Int J Food Sci Technol. 2018;53:1095–108. https://doi.org/10.1111/ijfs.13726.

    Article  CAS  Google Scholar 

  84. Lynd LR, Paye JMD, Balch M. Systems and methods for enhancing microbial conversion of biomass using mechanical augmentation. U.S. Patent No. 10,533,194. Washington, DC: U.S. Patent and Trademark Office.

  85. Haldar D, Purkait MK. Lignocellulosic conversion into value-added products: A review. Process Biochem. 2020;89:110–33. https://doi.org/10.1016/j.procbio.2019.10.001.

    Article  CAS  Google Scholar 

  86. Maitan-Alfenas GP, Visser EM, Guimarães VM. Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci. 2015;1:44–9. https://doi.org/10.1016/j.cofs.2014.10.001.

    Article  Google Scholar 

  87. Saini JK, Patel AK, Adsul M, Singhania RR. Cellulase adsorption on lignin: A roadblock for economic hydrolysis of biomass. Renew Energy. 2016;98:29–42. https://doi.org/10.1016/j.renene.2016.03.089.

    Article  CAS  Google Scholar 

  88. Ravichandran S. Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int J Sci Nat. 2012;3:480–6.

    Google Scholar 

  89. Thomas L, Larroche C, Pandey A. Current developments in solid-state fermentation. Biochem Eng J. 2013;81:146–61. https://doi.org/10.1016/j.bej.2013.10.013.

    Article  CAS  Google Scholar 

  90. Bastidas-Oyanedel JR, Bonk F, Thomsen MH, Schmidt JE. Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev Environ Sci Biotechnol. 2015;14:473–98. https://doi.org/10.1007/s11157-015-9369-3.

    Article  CAS  Google Scholar 

  91. Xue G, Lai S, Li X, Zhang W, You J, Chen H, et al. Efficient bioconversion of organic wastes to high optical activity of L-lactic acid stimulated by cathode in mixed microbial consortium. Water Res. 2018;131:1–10. https://doi.org/10.1016/j.watres.2017.12.024.

    Article  CAS  PubMed  Google Scholar 

  92. Bai Z, Gao Z, Sun J, Wu B, He B. d-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue. Bioresour Technol. 2016;207:346–52. https://doi.org/10.1016/j.biortech.2016.02.007.

    Article  CAS  PubMed  Google Scholar 

  93. Nguyen CM, Kim J-S, Nguyen TN, Kim SK, Choi GJ, Choi YH, et al. Production of l- and d-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation. Bioresour Technol. 2013;146:35–43. https://doi.org/10.1016/j.biortech.2013.07.035.

    Article  CAS  PubMed  Google Scholar 

  94. Kareem SO, Rahman RA. Utilization of banana peels for citric acid production by Aspergillus niger. Agric Biol J North Am. 2013;4:384–7.

    Article  CAS  Google Scholar 

  95. Zhang AY, Sun Z, Leung CCJ, Han W, Lau KY, Li M, et al. Valorisation of bakery waste for succinic acid production. Green Chem. 2013;15:690–5. https://doi.org/10.1039/C2GC36518A.

    Article  CAS  Google Scholar 

  96. Yang X, Wang H, Li C, Lin CSK. Restoring of glucose metabolism of engineered Yarrowia lipolytica for succinic acid production via a simple and efficient adaptive evolution strategy. J Agric Food Chem. 2017;65:4133–9. https://doi.org/10.1021/acs.jafc.7b00519.

    Article  CAS  PubMed  Google Scholar 

  97. Leung CCJ, Cheung ASY, Zhang AYZ, Lam KF, Lin CSK. Utilisation of waste bread for fermentative succinic acid production. Biochem Eng J. 2012;65:10–5. https://doi.org/10.1016/j.bej.2012.03.010.

  98. Verotta L, Panzella L, Antenucci S, Calvenzani V, Tomay F, Petroni K, et al. Fermented pomegranate wastes as sustainable source of ellagic acid: Antioxidant properties, anti-inflammatory action, and controlled release under simulated digestion conditions. Food Chem. 2018;246:129–36. https://doi.org/10.1016/j.foodchem.2017.10.131.

    Article  CAS  PubMed  Google Scholar 

  99. Lam KF, Leung CCJ, Lei HM, Lin CSK. Economic feasibility of a pilot-scale fermentative succinic acid production from bakery wastes. Food Bioprod Process. 2014;92:282–90. https://doi.org/10.1016/j.fbp.2013.09.001.

    Article  CAS  Google Scholar 

  100. Demichelis F, Fiore S, Pleissner D, Venus J. Technical and economic assessment of food waste valorisation through a biorefinery chain. Renew Sustain Energy Rev. 2018;94:38–48. https://doi.org/10.1016/j.rser.2018.05.064.

    Article  Google Scholar 

  101. Arora A, Banerjee J, Vijayaraghavan R, MacFarlane D, Patti AF. Process design and techno-economic analysis of an integrated mango processing waste biorefinery. Ind Crops Prod. 2018;116:24–34. https://doi.org/10.1016/j.indcrop.2018.02.061.

    Article  CAS  Google Scholar 

  102. Jin Q, O’Keefe SF, Stewart AC, Neilson AP, Kim Y-T, Huang H. Techno-economic analysis of a grape pomace biorefinery: Production of seed oil, polyphenols, and biochar. Food Bioprod Process. 2021;127:139–51. https://doi.org/10.1016/j.fbp.2021.02.002.

    Article  CAS  Google Scholar 

  103. Ntimbani RN, Farzad S, Görgens JF. Techno-economic assessment of one-stage furfural and cellulosic ethanol co-production from sugarcane bagasse and harvest residues feedstock mixture. Ind Crops Prod. 2021;162: 113272. https://doi.org/10.1016/j.indcrop.2021.113272.

    Article  CAS  Google Scholar 

  104. Özüdoğru HMR, Nieder-Heitmann M, Haigh KF, Görgens JF. Techno-economic analysis of product biorefineries utilizing sugarcane lignocelluloses: Xylitol, citric acid and glutamic acid scenarios annexed to sugar mills with electricity co-production. Ind Crops Prod. 2019;133:259–68. https://doi.org/10.1016/j.indcrop.2019.03.015.

    Article  CAS  Google Scholar 

  105. EEA (European Environment Agency). The circular economy and the bioeconomy: partners in sustainability. EEA report 8. Luxembourg: Publications Office of the European Union; 2018. https://doi.org/10.2800/02937.

  106. Dahiya S, Kumar AN, Sravan JS, Chatterjee S, Sarkar O, Mohan SV. Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresour technol. 2018;248:2–12. https://doi.org/10.1016/j.biortech.2017.07.176.

    Article  CAS  PubMed  Google Scholar 

  107. Teigiserova DA, Hamelin L, Thomsen M. Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resour Conserv Recycl. 2019;149:413–26. https://doi.org/10.1016/j.resconrec.2019.05.003.

    Article  Google Scholar 

  108. Kiran EU, Trzcinski AP, Ng WJ, Liu Y. Enzyme production from food wastes using a biorefinery concept. Waste Biomass Valor. 2014;5(6):903–17. https://doi.org/10.1007/s12649-014-9311-x.

    Article  CAS  Google Scholar 

  109. Obruca S, Benesova P, Kucera D, Petrik S, Marova I. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. N biotechnol. 2015;32(6):569–74. https://doi.org/10.1016/j.nbt.2015.02.008.

    Article  CAS  PubMed  Google Scholar 

  110. Righetti E, Nortilli S, Fatone F, Frison N, Bolzonella D. A multiproduct biorefinery approach for the production of hydrogen, methane and volatile fatty acids from agricultural waste. Waste Biomass Valor. 2020. https://doi.org/10.1007/s12649-020-01023-3.

    Article  Google Scholar 

  111. Rajesh RO, Godan TK, Sindhu R, Pandey A, Binod P. Bioengineering advancements, innovations and challenges on green synthesis of 2, 5-furan dicarboxylic acid. Bioengineered. 2020;11(1):19–38. https://doi.org/10.1080/21655979.2019.1700093.

    Article  CAS  PubMed  Google Scholar 

  112. Mika LT, Csefalvay E, Nemeth A. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem rev. 2018;118(2):505–613. https://doi.org/10.1021/acs.chemrev.7b00395.

    Article  CAS  PubMed  Google Scholar 

  113. Zacharof MP. Grape winery waste as feedstock for bioconversions: applying the biorefinery concept. Waste and biomass valorisation. 2017;8:1011–25. https://doi.org/10.1007/s12649-016-9674-2.

    Article  CAS  Google Scholar 

  114. Bragatto J, Segato F, Squina FM. Production of xylooligosaccharides (XOS) from delignified sugarcane bagasse by peroxide-HAc process using recombinant xylanase from Bacillus subtilis. Ind Crops Prod. 2013;51:123–9. https://doi.org/10.1016/j.indcrop.2013.08.062.

    Article  CAS  Google Scholar 

  115. Ni'matuzahroh, Sari SK, Trikurniadewi N, Ibrahim SNMM, Khiftiyah AM, Abidin AZ, Nurhariyati T, Fatimah. Bioconversion of agricultural waste hydrolysate from lignocellulolytic mold into biosurfactant by Achromobacter sp. BP(1)5. Biocat Agri Biotechnol. 2020;24:101534. https://doi.org/10.1016/j.bcab.2020.101534.

  116. Kim HM, Song Y, Wi SG, Bae H-J. Production of D-tagatose and bioethanol from onion waste by an integrating bioprocess. J Biotechnol. 2017;260:84–90. https://doi.org/10.1016/j.jbiotec.2017.09.013.

    Article  CAS  PubMed  Google Scholar 

  117. Kundu D, Banerjee S, Karmakar S, Banerjee R. Valorisation of citrus lemon wastes through biorefinery approach: An industrial symbiosis. Bioresour Technol Rep. 2021;15:100717. https://doi.org/10.1016/j.biteb.2021.100717.

  118. Wang X, Liu Y, Cui X, Xiao J, Lin G, Chen Y, Yang H, Chen H. Production of furfural and levoglucosan from typical agricultural wastes via pyrolysis coupled with hydrothermal conversion: Influence of temperature and raw materials. Waste Manage. 2020;114:43–52. https://doi.org/10.1016/j.wasman.2020.06.045.

    Article  CAS  Google Scholar 

  119. Ying W, Xu Y, Zhang J. Effect of sulfuric acid on production of xylooligosaccharides and monosaccharides from hydrogen peroxide-acetic acid-pretreated poplar. Bioresour Technol. 2021;321: 124472. https://doi.org/10.1016/j.biortech.2020.124472.

    Article  CAS  PubMed  Google Scholar 

  120. Jayapal N, Samanta AK, Kolte AP, Senani S, Sridhar M, Suresh KP, Sampath KT. Value addition to sugarcane bagasse: Xylan extraction and its process optimization for xylooligosaccharides production. Ind Crops Prod. 2013;42:14–24. https://doi.org/10.1016/j.indcrop.2012.05.019.

    Article  CAS  Google Scholar 

  121. Samanta AK, Senani S, Kolte AP, Sridhar M, Sampath KT, Jayapal N, Devi A. Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioprod Process. 2012;90:466–74. https://doi.org/10.1016/j.fbp.2011.11.001.

    Article  CAS  Google Scholar 

  122. Ávila PF, Martins M, de Almeida Costa FA, Goldbeck R. Xylooligosaccharides production by commercial enzyme mixture from agricultural wastes and their prebiotic and antioxidant potential. Bioact Carbohyd Diet Fibre. 2020;24: 100234. https://doi.org/10.1016/j.bcdf.2020.100234.

    Article  CAS  Google Scholar 

  123. İspirli H, Dertli E. Production of lactose derivative hetero-oligosaccharides from whey by glucansucrase E81 and determination of prebiotic functions. 2021;137:110471. https://doi.org/10.1016/j.lwt.2020.110471.

  124. Martins M, Ávila PF, de Andrade CCP, Goldbeck R. Synergic recombinant enzyme association to optimize xylo-oligosaccharides production from agricultural waste. Biocat Agri Biotechnol. 2020;28: 101747. https://doi.org/10.1016/j.bcab.2020.101747.

    Article  Google Scholar 

  125. Nong D, Escobar N, Britz W, Börner J. Long-term impacts of bio-based innovation in the chemical sector: A dynamic global perspective. J Clean Prod. 2020;272: 122738. https://doi.org/10.1016/j.jclepro.2020.122738.

    Article  CAS  Google Scholar 

  126. EEA (European Environment Agency). Bio-waste in Europe - turning challenges into opportunities. EEA report 4. Luxembourg: Publications Office of the European Union; 2020. https://doi.org/10.2800/630938.

  127. Haber H, Beringer T, Bhattacharya SC, Erb K-H, Hoogwijk M. The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr Opin Environ Sustain. 2010;2(5–6):394–403. https://doi.org/10.1016/j.cosust.2010.10.007.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the European Commission and the Erasmus+ International Master of Science in Environmental Technology and Engineering (IMETE) for financing and supporting the M.Sc. programme at UCT Prague (Czech Republic), IHE Delft (The Netherlands), and Ghent University (Belgium).

Funding

The research was funded by ERASMUS + International Master of Science in Environmental Technology and Engineering (IMETE) to pursue the MSc programme (2017–1957/001–001-EMJMD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kover.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kover, A., Kraljić, D., Marinaro, R. et al. Processes for the valorization of food and agricultural wastes to value-added products: recent practices and perspectives. Syst Microbiol and Biomanuf 2, 50–66 (2022). https://doi.org/10.1007/s43393-021-00042-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-021-00042-y

Keywords

Navigation