Skip to main content
Log in

Saponins extracted by ultrasound from Zizyphus jujuba Mil var. spinosa leaves exert resistance to oxidative damage in Caenorhabditis elegans

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This work aims to investigate antioxidant activities of saponins extracts from Zizyphus jujuba Mill var. spinosa leaves (ZSL). In this study, saponins were extracted by ultrasound-assisted method, Box-Behnken design (BBD) and response surface methodology (RSM) were applied to obtain the optimal extraction conditions were as follows: ratio of liquid to material 36:1 mL/g, ethanol concentration 50%, ultrasonic power 381 W, extracting time 50 min, and the highest extraction rate was 15.54 ± 0.19%. Then the antioxidant activity of ZSL saponins was evaluated by antioxidant activity assay in vitro and in Caenorhabditis elegans (C. elegans). The half maximal inhibitory concentration (IC50) of ZSL saponins on DPPH radicals, ABTS radicals and hydroxyl radicals were 1.19 mg/mL, 0.35 mg/mL and 0.38 mg/mL, respectively, and exhibited strong reducing power, showing good antioxidant activity in vitro. In addition, ZSL saponins had an effective role in the resistance to oxidative damage in C. elegans: enhancing the resistance to heat stress and hydrogen peroxide (H2O2) oxidative stress, ameliorating the chemotactic ability, inhibiting the accumulation of reactive oxygen species (ROS), increasing the activity of glutathione s-transferase 4 (GST-4), superoxide dismutase 3 (SOD-3), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and decreasing the content of malondialdehyde (MDA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. China Botanical Flora Editorial Committee, Flora of China, vol. 48 (Science Press, Beijing, 1982), p. 135

    Google Scholar 

  2. T.T. Lin, Y. Liu, C.J.S. Lai, T.T. Yang, J.B. Xie, Y.Q. Zhang, The effect of ultrasound assisted extraction on structural composition, antioxidant activity and immunoregulation of polysaccharides from Ziziphus jujuba Mill var. spinosa seeds. Ind. Crop. Prod. 125, 150–159 (2018)

    CAS  Google Scholar 

  3. F.J. Zhuang, X.P. Xu, D. Yu, Z.Z. Chi, Y.Y. Dong, C.X. Zhang, Y.S. Chi, Improvement of sleep by Laoshan Zizyphus jujube bud tea in mice. J. Food Saf. Qual. 8, 4051–4056 (2017)

    Google Scholar 

  4. X.H. Zhao, L.N. Yi, Effect of Ziziphus jujube leaf extract on the central nervous system. Lishizhen Med. Mater. Med. Res. 20, 463–464 (2009)

    Google Scholar 

  5. R.T. Zhang, J.H. Chen, Q. Shi, Z.Y. Li, Z.Y. Peng, L. Zheng, X.R. Wang, Phytochemical analysis of Chinese commercial Ziziphus jujube leaf tea using high performance liquid chromatography-electrospray ionization-time of flight mass spectrometry. Food Res. Int. 56, 47–54 (2014)

    CAS  Google Scholar 

  6. S. Guo, J.A. Duan, Y.P. Tang, Y.F. Qian, J.L. Zhao, D.W. Qian, S.L. Su, E.X. Shang, Simultaneous qualitative and quantitative analysis of triterpenic acids, saponins and flavonoids in the leaves of two Ziziphus species by HPLC-PDA-MS/ELSD. J. Pharm. Biomed. Anal. 56, 264–270 (2011)

    CAS  PubMed  Google Scholar 

  7. J. Ye, M. Yang, X. Yang, H. Zhang, L. Zan, Analysis of chemical constituents in Ziziphus jujuba var. spinosa folium by UPLC-QTOF-MS. Nat. Prod. Res. Dev. 31, 1183–1191 (2019)

    Google Scholar 

  8. S. Khan, M. Nazir, N. Raiz, M. Saleem, G. Zengin, G. Fazal, H. Saleem, M. Mukhtar, M.I. Tousif, R.B. Tareen, H.H. Abdallah, F.M. Mahomoodally, Phytochemical profiling, in vitro biological properties and in silico studies on Caragana ambigua stocks (Fabaceae): a comprehensive approach. Ind. Crop. Prod. 131, 117–124 (2019)

    CAS  Google Scholar 

  9. S.T. Sakna, A. Mocan, H.N. Sultani, N.M. El-fiky, L.A. Wessjohann, M.A. Farag, Metabolites profiling of Ziziphus leaf taxa via UHPLC/PDA/ESI-MS in relation to their biological activities. Food Chem. 293, 233–246 (2019)

    CAS  PubMed  Google Scholar 

  10. Y.J. Li, S.W. Guan, C. Liu, X.H. Chen, Y.M. Zhu, Y.T. Xie, J.B. Wang, X. Ji, L.Q. Li, Z.H. Li, Y. Zhang, X.Z. Zeng, M.Q. Li, Neuroprotective effects of Coptis chinensis Franch polysaccharide on amyloid-beta (A beta)-induced toxicity in a transgenic Caenorhabditis elegans model of Alzheimer’s disease (AD). Int. J. Biol. Macromol. 113, 991–995 (2018)

    CAS  PubMed  Google Scholar 

  11. L. Ma, Y.D. Zhao, Y.C. Chen, B. Cheng, A.L. Peng, K. Huang, Caenorhabditis elegans as a model system for target identification and drug screening against neurodegenerative diseases. Eur. J. Pharmacol. 819, 169–180 (2018)

    CAS  PubMed  Google Scholar 

  12. Z.Y. Fang, Y.T. Chen, G. Wang, T. Feng, M. Shen, B. Xiao, J.Y. Gu, W.M. Wang, J. Li, Y.J. Zhang, Evaluation of the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides using a Caenorhabditis elegans model. Food Funct. 10, 5531–5543 (2019)

    CAS  PubMed  Google Scholar 

  13. H.L. Wang, J. Liu, T. Li, R.H. Liu, Blueberry extract promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Food Funct. 9, 5273–5282 (2018)

    CAS  PubMed  Google Scholar 

  14. J. Chen, J. Zhang, Y.X. Xiang, L.M. Xiang, Y.M. Liu, X.J. He, X.J. Zhou, X. Liu, Z.B. Huang, Extracts of Tsai Tai (Brassica chinensis): enhanced antioxidant activity and anti-aging effects both in vitro and in Caenorhabditis elegans. Food Funct. 7, 943–952 (2016)

    CAS  PubMed  Google Scholar 

  15. E.F. Griffin, K.A. Caldwell, G.A. Caldwell, Genetic and pharmacological discovery for Alzheimer’s disease using Caenorhabditis elegans. ACS Chem. Neurosci. 8, 2596–2606 (2017)

    CAS  PubMed  Google Scholar 

  16. K.A. Lenz, C. Pattison, H. Ma, Triclosan (TCS) and triclocarban (TCC) induce systemic toxic effects in a model organism the nematode Caenorhabditis elegans. Environ. Pollut. 231, 462–470 (2017)

    CAS  PubMed  Google Scholar 

  17. T. Xu, M. Zhang, J. Hu, Z. Li, T. Wu, J. Bao, S. Wu, L. Lei, D. He, Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements. Chemosphere 181, 55–62 (2017)

    CAS  PubMed  Google Scholar 

  18. X. Cao, X. Wang, H. Chen, H. Li, M. Tariq, C. Wang, Y. Zhou, Y. Liu, Neurotoxicity of nonylphenol exposure on Caenorhabditis elegans induced by reactive oxidative species and disturbance synthesis of serotonin. Environ. Pollut. 244, 947–957 (2019)

    CAS  PubMed  Google Scholar 

  19. T.T. Yang, L.L. Fang, T.T. Lin, J.Y. Li, Y.Q. Zhang, A.M. Zhou, J.B. Xie, Ultrasonicated sour Jujube seed flavonoids extract exerts ameliorative antioxidant capacity and reduces A beta-induced toxicity in Caenorhabditis elegans. J. Ethnopharmacol. 239, 111886 (2019)

    CAS  PubMed  Google Scholar 

  20. S. El Kantar, H.N. Rajha, N. Boussetta, E. Vorobiev, R.G. Maroun, N. Louka, Green extraction of polyphenols from grapefruit peels using high voltage electrical discharges, deep eutectic solvents and aqueous glycerol. Food Chem. 295, 165–171 (2019)

    PubMed  Google Scholar 

  21. J.N. del Hierro, T. Herrera, M.R. Garcia-Risco, T. Fornari, G. Reglero, D. Martin, Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: quinoa, lentil, fenugreek, soybean and lupin. Food Res. Int. 109, 440–447 (2018)

    Google Scholar 

  22. Q.T. Zhao, L.X. Shu, Determination of total saponins in the seed of Ziziphus jujuba Mill var. spinose. J. Tianjin Univ. Tradit. Chin. Med. 32, 229–231 (2013)

    Google Scholar 

  23. N.F. Marques, S.T. Stefanello, A.L.F. Froeder, A. Busanello, A.A. Boligon, M.L. Athayde, F.A.A. Soares, R. Fachinetto, Centella asiatica and its fractions reduces lipid peroxidation induced by quinolinic acid and sodium nitroprusside in rat brain regions. Neurochem. Res. 40, 1197–1210 (2015)

    CAS  PubMed  Google Scholar 

  24. L.J. Jiao, C.P. Yan, K.S. Zhang, J.B. Xie, Y.Q. Zhang, Z.Y. Wen, Comprehensive determination of nine polyphenols in Polygoni Avicularis Herba with a new HPLC-DAD method and their correlation with the antioxidant activities. J. Food Meas. Charact. 12, 1593–1600 (2018)

    Google Scholar 

  25. P. Siddhuraju, The antioxidant activity and free radical-scavenging capacity of phenolics of raw and dry heated moth bean (Vigna aconitifolia) (Jacq.) Marechal seed extracts. Food Chem. 99, 149–157 (2006)

    CAS  Google Scholar 

  26. S. Xiao, Y.Q. Zhang, J.B. Xie, Z.Y. Wen, Ultrasonic-assisted extraction of squalene and vitamin E based oil from Zizyphi Spinosae Semen and evaluation of its antioxidant activity. J. Food Meas. Charact. 12, 2844–2854 (2018)

    Google Scholar 

  27. K. Filippopoulou, N. Papaevgeniou, M. Lefaki, A. Paraskevopoulou, D. Biedermann, V. Kren, N. Chondrogianni, 2,3-Dehydrosilybin A/B as a pro-longevity and anti-aggregation compound. Free Radic. Biol. Med. 103, 256–267 (2017)

    CAS  PubMed  Google Scholar 

  28. W. Chen, H.R. Lin, C.M. Wei, X.H. Luo, M.L. Sun, Z.Z. Yang, X.Y. Chen, H.B. Wang, Echinacoside, a phenylethanoid glycoside from Cistanche deserticola, extends lifespan of Caenorhabditis elegans and protects from A beta-induced toxicity. Biogerontology 19, 47–65 (2018)

    CAS  PubMed  Google Scholar 

  29. P. Jattujan, P. Chalorak, T. Siangcham, K. Sangpairoj, S. Nobsathian, T. Poomtong, P. Sobhon, K. Meemon, Holothuria scabra extracts possess anti-oxidant activity and promote stress resistance and lifespan extension in Caenorhabditis elegan. Exp. Gerontol. 110, 158–171 (2018)

    CAS  PubMed  Google Scholar 

  30. J. Yang, Z. Chen, F. Yang, S. Wang, F. Hou, A microfluidic device for rapid screening of chemotaxis-defective Caenorhabditis elegans mutants. Biomed. Microdevices 15, 211–220 (2013)

    PubMed  Google Scholar 

  31. Q. He, G. Huang, Y. Chen, X. Wang, Z. Huang, Z. Chen, The protection of novel 2-arylethenylquinoline derivatives against impairment of associative learning memory induced by neural Aβ in C. elegans Alzheimer’s disease model. Neurochem. Res. 42, 3061–3072 (2017)

    CAS  PubMed  Google Scholar 

  32. C. Buchter, D. Ackermann, S. Havermann, S. Honnen, Y. Chovolou, G. Fritz, A. Kampkotter, W. Watjen, Myricetin-mediated lifespan extension in Caenorhabditis elegans is modulated by DAF-16. Int. J. Mol. Sci. 14, 11895–11914 (2013)

    PubMed  PubMed Central  Google Scholar 

  33. C.X. Lin, X.Y. Zhang, J. Xiao, Q.Q. Zhong, Y. Kuang, Y. Cao, Y.J. Chen, Effects on longevity extension and mechanism of action of carnosic acid in Caenorhabditis elegans. Food Funct. 10, 1398–1410 (2019)

    PubMed  Google Scholar 

  34. M.K. Brown, J.L. Evans, Y. Luo, Beneficial effects of natural antioxidants EGCG and alpha-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol. Biochem. Behav. 85, 620–628 (2006)

    CAS  PubMed  Google Scholar 

  35. X.L. Wang, K.X. Yi, Y. Zhao, Fucoidan inhibits amyloid-beta-induced toxicity in transgenic Caenorhabditis elegans by reducing the accumulation of amyloid-beta and decreasing the production of reactive oxygen species. Food Funct. 9, 552–560 (2018)

    CAS  PubMed  Google Scholar 

  36. W. Chen, Z. Zhao, L. Li, B. Wu, S.F. Chen, H. Zhou, Y. Wang, Y.Q. Li, Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway. Free Radic. Biol. Med. 45, 60–72 (2008)

    PubMed  Google Scholar 

  37. N. Libina, J.R. Berman, C. Kenyon, Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115, 489–502 (2003)

    CAS  PubMed  Google Scholar 

  38. B.R. Leiers, A. Kampkotter, C.G. Grevelding, C.D. Link, T.E. Johnson, K. Henkle-Duhrsen, A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radic. Biol. Med. 34, 1405–1415 (2003)

    CAS  PubMed  Google Scholar 

  39. J.H. Doroshow, A. Juhasz, Modulation of selenium-dependent glutathione peroxidase activity enhances doxorubicin-induced apoptosis, tumour cell killing and hydroxyl radical production in human NCI/ADR-RES cancer cells despite high-level P-glycoprotein expression. Free Radic. Res. 53, 882–891 (2019)

    CAS  PubMed  Google Scholar 

  40. S.L. Lin, J.L. Yeh, P.C. Tsai, T.H. Chang, W.C. Huang, S.T. Lee, M. Wassler, Y.J. Geng, E. Sulistyowati, Sulistyowati, inhibition of neointima hyperplasia, inflammation, and reactive oxygen species in balloon-injured arteries by HVJ envelope vector-mediated delivery of superoxide dismutase gene. Transl. Stroke Res. 10, 413–427 (2019)

    CAS  PubMed  Google Scholar 

  41. Z. Kaptan, K.A. Dar, A. Kapucu, H. Bulut, G. Uzum, Effect of enriched environment and predictable chronic stress on spatial memory in adolescent rats: predominant expression of BDNF, nNOS, and interestingly malondialdehyde in the right hippocampus. Brain Res. 1721, 146326 (2019)

    CAS  PubMed  Google Scholar 

  42. M.H. Syeda, S. Bushra, I. Munawar, N. Saima, A. Mazhar, Anti-aflatoxigenic activity of Punica granatum and Ziziphus jujuba leaves against Aspergillus parasiticus inoculated poultry feed: effect of storage conditions. Biocatal. Agric. Biotechnol. 10, 104–112 (2017)

    Google Scholar 

  43. D. Silvia, F. Martino, D. Arpan, A.V. Luca, L. Giulio, T.S. Orazio, Antioxidant and antibiofilm activities of secondary metabolites from Ziziphus jujuba leaves used for infusion preparation. Food Chem. 230, 24–29 (2017)

    Google Scholar 

  44. R.T. Zhang, J.H. Chen, Q.A. Shi, Z.Y. Li, Z.G. Peng, L. Zheng, X.R. Wang, Quality control method for commercially available wild Jujube leaf tea based on HPLC characteristic fingerprint analysis of flavonoid compounds. J. Sep. Sci. 37, 45–52 (2014)

    CAS  PubMed  Google Scholar 

  45. P. Heffls, F. Weber, A. Schieber, Influence of accelerated solvent extraction and ultrasound-assisted extraction on the anthocyanin profile of different vaccinium species in the context of statistical models for authentication. J. Agric. Food Chem. 63, 7532–7538 (2015)

    Google Scholar 

  46. S.M. Harde, S.L. Lonkar, M.S. Degani, R.S. Singhal, Ionic liquid based ultrasonicassisted extraction of forskolin from Coleus forskohlii roots. Ind. Crops Prod. 61, 258–264 (2014)

    CAS  Google Scholar 

  47. Y.X. Li, A.M. Zhou, X.S. Cui, Y.Q. Zhang, J.B. Xie, 6ʹʺ-p-Coumaroylspinosin protects PC12 neuronal cells from acrylamide-induced oxidative stress and apoptosis. J. Food Biochem. (2020). https://doi.org/10.1111/jfbc.13347

    Article  PubMed  PubMed Central  Google Scholar 

  48. F.L. Zhong, W.J. Wang, X.L. Wang, Y. Cao, Microwave assisted aqueous two-phase extraction of total saponins from Astragalus stem and the antioxidant activity of the extracts. J. Tianjin Univ. Sci. Technol. 31, 25–29 (2016)

    Google Scholar 

Download references

Funding

The present research was financially supported by the Tianjin First, Second and Third Industry Integration Development Technology Demonstration Project (No. 17ZXYENC00190)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanqing Zhang or Junbo Xie.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhang, Y., Qi, W. et al. Saponins extracted by ultrasound from Zizyphus jujuba Mil var. spinosa leaves exert resistance to oxidative damage in Caenorhabditis elegans. Food Measure 15, 541–554 (2021). https://doi.org/10.1007/s11694-020-00653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00653-4

Keywords

Navigation