Skip to main content
Log in

Yeast Single Cell Oils from Bioresources: Current Developments in Production and Applications

  • Bioconversion (SK Brar and G Kaur, Section Editors)
  • Published:
Current Sustainable/Renewable Energy Reports Aims and scope Submit manuscript

A Correction to this article was published on 12 November 2020

This article has been updated

Abstract

Purpose of Review

The purpose of this review is to describe the process of conversion of bioresources into lipids by yeasts and their applications. Current challenges at industrial scale and scope for future developments have been discussed.

Recent Findings

Sustainable routes for industrial yeast lipid production using innovative techniques for pretreatment to downstream processing are the targets for research. The latest blossoming research areas are genetic modification strategies to improve lipid production and recovery along with the production of non-native lipid–derived products.

Summary

Yeast lipid has emerged as a bio-similar to vegetable oils that can be used for the production of fuel, chemicals, polymers, and nutraceuticals. The main stages with high-cost contribution in bioconversion of biomass to lipid are identified. For an economically feasible product, the lipid yields must be improved and a combination of high-value and low-value products should be produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Change history

  • 12 November 2020

    The original version of this article contained mistake and the author would like to correct them. The references are incorrect and hence misleading. The original article has been corrected and shows the correct references.

Abbreviations

LCB:

lignocellulosic biomass

SCO:

single cell Oil

SHF:

separate hydrolysis and fermentation

SSF:

simultaneous saccharification and fermentation

CB:

consolidated bioprocessing

IL:

ionic liquids

FAMEs:

fatty acid methyl esters

BTEX:

benzene, toluene, ethyl benzene, and xylene

HMF:

hydroxymethyfurfural;

GLA:

γ-linolenic acid

DHA:

docosahexaenoic acid

ARA:

arachidonic acid

EPA:

eicosapentaenoic acid

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Shields-Menard SA, Amirsadeghi M, French WT, Boopathy R. A review on microbial lipids as a potential biofuel. Bioresour Technol. 2018;259:451–60. https://doi.org/10.1016/j.biortech.2018.03.080.

    Article  Google Scholar 

  2. Liang MH, Jiang JG. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res. 2013;52(4):395–408. https://doi.org/10.1016/j.plipres.2013.05.002.

    Article  Google Scholar 

  3. Fakas S. Lipid biosynthesis in yeasts: a comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica. Eng Life Sci. 2017;17(3):292–302. https://doi.org/10.1002/elsc.201600040.

    Article  Google Scholar 

  4. Bandhu S, Dasgupta D, Akhter J, Kanaujia P, Suman SK, Agrawal D, et al. Statistical design and optimization of single cell oil production from sugarcane bagasse hydrolysate by an oleaginous yeast Rhodotorula sp. IIP-33 using response surface methodology. SpringerPlus. 2014;3(1):691. https://doi.org/10.1186/2193-1801-3-691.

    Article  Google Scholar 

  5. Leong WH, Lim JW, Lam MK, Uemura Y, Ho YC. Third generation biofuels: a nutritional perspective in enhancing microbial lipid production. Renew Sust Energ Rev. 2018;91:950–61. https://doi.org/10.1016/j.rser.2018.04.066.

    Article  Google Scholar 

  6. Beopoulos A, Nicaud JM, Gaillardin C. An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol. 2011;90(4):1193–206. https://doi.org/10.1007/s00253-011-3212-8.

    Article  Google Scholar 

  7. Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, et al. Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv. 2014;32(7):1336–60. https://doi.org/10.1016/j.biotechadv.2014.08.003.

    Article  Google Scholar 

  8. Tang X, Zan X, Zhao L, Chen H, Chen YQ, Chen W, et al. Proteomics analysis of high lipid-producing strain Mucor circinelloides WJ11: an explanation for the mechanism of lipid accumulation at the proteomic level. Microb Cell Factories. 2016;15(1):35. https://doi.org/10.1186/s12934-016-0428-4.

    Article  Google Scholar 

  9. Dourou M, Aggeli D, Papanikolaou S, Aggelis G. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl Microbiol Biotechnol. 2018;102(6):2509–23. https://doi.org/10.1007/s00253-018-8813-z.

    Article  Google Scholar 

  10. Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK. Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel. 2014;116:566–77. https://doi.org/10.1016/j.fuel.2013.08.045.

    Article  Google Scholar 

  11. Arous F, Atitallah IB, Nasri M, Mechichi T. A sustainable use of low-cost raw substrates for biodiesel production by the oleaginous yeast Wickerhamomyces anomalus. 3 Biotech. 2017;7(4):268. https://doi.org/10.1007/s13205-017-0903-6.

    Article  Google Scholar 

  12. Qin L, Liu L, Zeng AP, Wei D. From low-cost substrates to single cell oils synthesized by oleaginous yeasts. Bioresour Technol. 2017;245:1507–19. https://doi.org/10.1016/j.biortech.2017.05.163.

    Article  Google Scholar 

  13. De Bhowmick G, Sarmah AK, Sen R. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour Technol. 2018;247:1144–54. https://doi.org/10.1016/j.biortech.2017.09.163.

    Article  Google Scholar 

  14. Masri MA, Garbe D, Mehlmer N, Brück TB. A sustainable, high-performance process for the economic production of waste-free microbial oils that can replace plant-based equivalents. Energy Environ Sci. 2019;12(9):2717–32. https://doi.org/10.1039/C9EE00210C.

    Article  Google Scholar 

  15. Saini JK, Patel AK, Adsul M, Singhania RR. Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Renew Energy. 2016;98:29–42. https://doi.org/10.1016/j.renene.2016.03.089.

    Article  Google Scholar 

  16. Isikgor FH, Becer CR. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem. 2015;6(25):4497–559. https://doi.org/10.1039/C5PY00263J.

    Article  Google Scholar 

  17. Jin M, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, et al. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol. 2015;33(1):43–54. https://doi.org/10.1016/j.tibtech.2014.11.005.

    Article  Google Scholar 

  18. •• Cai J, He Y, Yu X, Banks SW, Yang Y, Zhang X, et al. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sust Energ Rev. 2017;76:309–22. https://doi.org/10.1016/j.rser.2017.03.072An extensive review providing systematic knowledge of lignocellulosic biomass properties and their characterization techniques for the conversion of biomass for biofuel applications.

    Article  Google Scholar 

  19. Hassan SS, Williams GA, Jaiswal AK. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour Technol. 2018;262:310–8. https://doi.org/10.1016/j.biortech.2018.04.099.

    Article  Google Scholar 

  20. Gupta A, Verma JP. Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev. 2015;41:550–67. https://doi.org/10.1016/j.rser.2014.08.032.

    Article  Google Scholar 

  21. Kim D. Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Molecules. 2018;23(2):309. https://doi.org/10.3390/molecules23020309.

    Article  Google Scholar 

  22. Maurya DP, Singla A, Negi S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech. 2015;5(5):597–609. https://doi.org/10.1007/s13205-015-0279-4.

    Article  Google Scholar 

  23. Ghosh D, Dasgupta D, Agrawal D, Kaul S, Adhikari DK, Kurmi AK, et al. Fuels and chemicals from lignocellulosic biomass: an integrated biorefinery approach. Energy Fuel. 2015;29(5):3149–57. https://doi.org/10.1021/acs.energyfuels.5b00144.

    Article  Google Scholar 

  24. Serna LD, Alzate CO, Alzate CC. Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol. 2016;199:113–20. https://doi.org/10.1016/j.biortech.2015.09.078.

    Article  Google Scholar 

  25. Zhao X, Li S, Wu R, Liu D. Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels Bioprod Biorefin. 2017;11(3):567–90. https://doi.org/10.1002/bbb.1768.

    Article  Google Scholar 

  26. Rouches E, Herpoël-Gimbert I, Steyer JP, Carrere H. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sust Energ Rev. 2016;59:179–98. https://doi.org/10.1016/j.rser.2015.12.317.

    Article  Google Scholar 

  27. Sangwan P, Mor V, Dhankhar R, Sukhani S. Optimization of process parameters for cellulase and xylanase production using rice husk. Int J Pharm Biosci. 2015;6:755–62.

    Google Scholar 

  28. Li Q, Song J, Peng S, Wang JP, Qu GZ, Sederoff RR, et al. Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnol J. 2014;12:1174–92. https://doi.org/10.1111/pbi.12273.

    Article  Google Scholar 

  29. Wu Z, Ren H, Xiong W, Roje S, Liu Y, Su K, et al. Methylenetetrahydrofolate reductase modulates methyl metabolism and lignin monomer methylation in maize. J Exp Bot. 2018;69(16):3963–73. https://doi.org/10.1093/jxb/ery208.

    Article  Google Scholar 

  30. •• Gandla ML, Martín C, Jönsson LJ. Analytical enzymatic saccharification of lignocellulosic biomass for conversion to biofuels and bio-based chemicals. Energies. 2018;11(11):2936. https://doi.org/10.3390/en11112936This review focuses on techniques for biomass pretreatment and enzymatic saccharification, and provides a detailed discussion on the advantages and disadvantages associated with the different approaches.

    Article  Google Scholar 

  31. An YX, Zong MH, Wu H, Li N. Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour Technol. 2015;192:165–71. https://doi.org/10.1016/j.biortech.2015.05.064.

    Article  Google Scholar 

  32. Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass–an overview. Bioresour Technol. 2016;199:76–82. https://doi.org/10.1016/j.biortech.2015.08.030.

    Article  Google Scholar 

  33. Kolouchová I, Maťátková O, Sigler K, Masák J, Řezanka T. Production of palmitoleic and linoleic acid in oleaginous and nonoleaginous yeast biomass. Int J Anal Chem. 2016;2016:1–9. https://doi.org/10.1155/2016/7583684.

    Article  Google Scholar 

  34. Bharathiraja B, Sridharan S, Sowmya V, Yuvaraj D, Praveenkumar R. Microbial oil–a plausible alternate resource for food and fuel application. Bioresour Technol. 2017;233:423–32. https://doi.org/10.1016/j.biortech.2017.03.006.

    Article  Google Scholar 

  35. Karlsson H, Ahlgren S, Sandgren M, Passoth V, Wallberg O, Hansson PA. A systems analysis of biodiesel production from wheat straw using oleaginous yeast: process design, mass and energy balances. Biotechnol Biofuels. 2016;9(1):229. https://doi.org/10.1186/s13068-016-0640-9.

    Article  Google Scholar 

  36. Guo ZP, Robin J, Duquesne S, O’Donohue MJ, Marty A, Bordes F. Developing cellulolytic Yarrowia lipolytica as a platform for the production of valuable products in consolidated bioprocessing of cellulose. Biotechnol Biofuels. 2018;11(1):141. https://doi.org/10.1186/s13068-018-1144-6.

    Article  Google Scholar 

  37. Fei Q, O’Brien M, Nelson R, Chen X, Lowell A, Dowe N. Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source. Biotechnol Biofuels. 2016;9(1):130. https://doi.org/10.1186/s13068-016-0542-x.

    Article  Google Scholar 

  38. Béligon V, Poughon L, Christophe G, Lebert A, Larroche C, Fontanille P. Validation of a predictive model for fed-batch and continuous lipids production processes from acetic acid using the oleaginous yeast Cryptococcus curvatus. Biochem Eng J. 2016;111:117–28. https://doi.org/10.1016/j.bej.2016.01.016.

    Article  Google Scholar 

  39. Yamada R, Yamauchi A, Kashihara T, Ogino H. Evaluation of lipid production from xylose and glucose/xylose mixed sugar in various oleaginous yeasts and improvement of lipid production by UV mutagenesis. Biochem Eng J. 2017;128:76–82. https://doi.org/10.1016/j.bej.2017.09.010.

    Article  Google Scholar 

  40. Bandhu S, Bansal N, Dasgupta D, Junghare V, Sidana A, Kalyan G, et al. Overproduction of single cell oil from xylose rich sugarcane bagasse hydrolysate by an engineered oleaginous yeast Rhodotorula mucilaginosa IIPL32. Fuel. 2019;254:115653. https://doi.org/10.1016/j.fuel.2019.115653.

    Article  Google Scholar 

  41. Parsons S, Abeln F, McManus MC, Chuck CJ. Techno-economic analysis (TEA) of microbial oil production from waste resources as part of a biorefinery concept: assessment at multiple scales under uncertainty. J Chem Technol Biotechnol. 2019;94(3):701–11. https://doi.org/10.1002/jctb.5811.

    Article  Google Scholar 

  42. Darvishi F, Ariana M, Marella ER, Borodina I. Advances in synthetic biology of oleaginous yeast Yarrowia lipolytica for producing non-native chemicals. Appl Microbiol Biotechnol. 2018;102(14):5925–38. https://doi.org/10.1007/s00253-018-9099-x.

    Article  Google Scholar 

  43. Lazar Z, Dulermo T, Neuvéglise C, Crutz-Le Coq AM, Nicaud JM. Hexokinase—a limiting factor in lipid production from fructose in Yarrowia lipolytica. Metab Eng. 2014;26:89–99. https://doi.org/10.1016/j.ymben.2014.09.008.

    Article  Google Scholar 

  44. Lazar Z, Gamboa-Meléndez H, Crutz-Le Coq AM, Neuvéglise C, Nicaud JM. Awakening the endogenous Leloir pathway for efficient galactose utilization by Yarrowia lipolytica. Biotechnol Biofuels. 2015;8(1):185. https://doi.org/10.1186/s13068-015-0370-4.

    Article  Google Scholar 

  45. Guo Z, Duquesne S, Bozonnet S, Cioci G, Nicaud JM, Marty A, et al. Development of cellobiose-degrading ability in Yarrowia lipolytica strain by over expression of endogenous genes. Biotechnol Biofuels. 2015;8(1):109. https://doi.org/10.1186/s13068-015-0289-9.

    Article  Google Scholar 

  46. Li H, Alper HS. Enabling xylose utilization in Yarrowia lipolytica for lipid production. Biotechnol J. 2016;11(9):1230–40. https://doi.org/10.1002/biot.201600210.

    Article  Google Scholar 

  47. Ledesma-Amaro R, Lazar Z, Rakicka M, Guo Z, Fouchard F, Crutz-Le Coq AM, et al. Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metab Eng. 2016;38:115–24. https://doi.org/10.1016/j.ymben.2016.07.001.

    Article  Google Scholar 

  48. Ledesma-Amaro R, Dulermo T, Nicaud JM. Engineering Yarrowia lipolytica to produce biodiesel from raw starch. Biotechnol Biofuels. 2015;8(1):148. https://doi.org/10.1186/s13068-015-0335-7.

    Article  Google Scholar 

  49. Zhao CH, Cui W, Liu XY, Chi ZM, Madzak C. Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials. Metab Eng. 2010;12(6):510–7. https://doi.org/10.1016/j.ymben.2010.09.001.

    Article  Google Scholar 

  50. Guo ZP, Duquesne S, Bozonnet S, Cioci G, Nicaud JM, Marty A, et al. Conferring cellulose-degrading ability to Yarrowia lipolytica to facilitate a consolidated bioprocessing approach. Biotechnol Biofuels. 2017;10(1):132. https://doi.org/10.1186/s13068-017-0819-8.

    Article  Google Scholar 

  51. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, et al. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol. 2008;74(24):7779–89. https://doi.org/10.1128/AEM.01412-08.

    Article  Google Scholar 

  52. Greer MS, Truksa M, Deng W, Lung SC, Chen G, Weselake RJ. Engineering increased triacylglycerol accumulation in Saccharomyces cerevisiae using a modified type 1 plant diacylglycerol acyltransferase. Appl Microbiol Biotechnol. 2015;99(5):2243–53. https://doi.org/10.1007/s00253-014-6284-4.

    Article  Google Scholar 

  53. Qiao K, Abidi SH, Liu H, Zhang H, Chakraborty S, Watson N, et al. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng. 2015;29:56–65. https://doi.org/10.1016/j.ymben.2015.02.005.

    Article  Google Scholar 

  54. Friedlander J, Tsakraklides V, Kamineni A, Greenhagen EH, Consiglio AL, MacEwen K, et al. Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnol Biofuels. 2016;9(1):77. https://doi.org/10.1186/s13068-016-0492-3.

    Article  Google Scholar 

  55. Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV. Engineering Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng. 2016;113(5):1056–66. https://doi.org/10.1002/bit.25864.

    Article  Google Scholar 

  56. Imatoukene N, Verbeke J, Beopoulos A, Taghki AI, Thomasset B, Sarde CO, et al. A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol. 2017;101(11):4605–16. https://doi.org/10.1007/s00253-017-8240-6.

    Article  Google Scholar 

  57. Xu P, Qiao K, Stephanopoulos G. Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnol Bioeng. 2017;114(7):1521–30. https://doi.org/10.1002/bit.26285.

    Article  Google Scholar 

  58. Qiao K, Wasylenko TM, Zhou K, Xu P, Stephanopoulos G. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol. 2017;35:173–7. https://doi.org/10.1038/nbt.3763.

    Article  Google Scholar 

  59. Xu P, Qiao K, Ahn WS, Stephanopoulos G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci. 2016;113(39):10848–53. https://doi.org/10.1073/pnas.1607295113.

    Article  Google Scholar 

  60. Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun. 2016;7(1):1–9. https://doi.org/10.1038/ncomms11709.

    Article  Google Scholar 

  61. Görner C, Redai V, Bracharz F, Schrepfer P, Garbe D, Brück T. Genetic engineering and production of modified fatty acids by the non-conventional oleaginous yeast Trichosporon oleaginosus ATCC 20509. Green Chem. 2016;18(7):2037–46. https://doi.org/10.1039/C5GC01767J.

    Article  Google Scholar 

  62. Kang DH, Anbu P, Kim WH, Hur BK. Coexpression of elo-like enzyme and Δ5, Δ4-desaturases derived from Thraustochytrium aureum ATCC 34304 and the production of DHA and DPA in Pichia pastoris. Biotechnol Bioprocess Eng. 2008;13(4):483–90. https://doi.org/10.1007/s12257-008-0156-7.

    Article  Google Scholar 

  63. Wang Y, Zhang S, Pötter M, Sun W, Li L, Yang X, et al. Overexpression of Δ12-fatty acid desaturase in the oleaginous yeast Rhodosporidium toruloides for production of linoleic acid-rich lipids. Appl Biochem Biotechnol. 2016;180(8):1497–507. https://doi.org/10.1007/s12010-016-2182-9.

    Article  Google Scholar 

  64. Han L, Peng Y, Zhang Y, Chen W, Lin Y, Wang Q. Designing and creating a synthetic omega oxidation pathway in Saccharomyces cerevisiae enables production of medium-chain α, ω-dicarboxylic acids. Front Microbiol. 2017;8:2184. https://doi.org/10.3389/fmicb.2017.02184.

    Article  Google Scholar 

  65. Ledesma-Amaro R, Dulermo R, Niehus X, Nicaud JM. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng. 2016;38:38–46. https://doi.org/10.1016/j.ymben.2016.06.004.

    Article  Google Scholar 

  66. Zhou YJ, Hu Y, Zhu Z, Siewers V, Nielsen J. Engineering 1-alkene biosynthesis and secretion by dynamic regulation in yeast. ACS Synth Biol. 2018;7(2):584–90. https://doi.org/10.1021/acssynbio.7b00338.

    Article  Google Scholar 

  67. Rakesh S, Saxena S, Dhar DW, Prasanna R, Saxena AK. Comparative evaluation of inorganic and organic amendments for their flocculation efficiency of selected microalgae. J Appl Phycol. 2014;26(1):399–406. https://doi.org/10.1007/s10811-013-0114-4.

    Article  Google Scholar 

  68. •• Khot M, Raut G, Ghosh D, Alarcón-Vivero M, Contreras D, Ravikumar A. Lipid recovery from oleaginous yeasts: perspectives and challenges for industrial applications. Fuel. 2020;259:116292. https://doi.org/10.1016/j.fuel.2019.116292This review presents conventional and newly published oleaginous yeast biomass conditioning methods. Existing lab-scale physical, chemical, and mechanical pretreatment methods for cell-mass have been described and compared.

    Article  Google Scholar 

  69. Byreddy AR, Gupta A, Barrow CJ, Puri M. Comparison of cell disruption methods for improving lipid extraction from Thraustochytrid strains. Mar Drugs. 2015;13(8):5111–27. https://doi.org/10.3390/md13085111.

    Article  Google Scholar 

  70. Tchakouteu SS, Kalantzi O, Gardeli C, Koutinas AA, Aggelis G, Papanikolaou S. Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. J Appl Microbiol. 2015;118(4):911–27. https://doi.org/10.1111/jam.12736.

    Article  Google Scholar 

  71. Patel A, Mikes F, Matsakas L. An overview of current pretreatment methods used to improve lipid extraction from oleaginous microorganisms. Molecules. 2018;23(7):1562. https://doi.org/10.3390/molecules23071562.

    Article  Google Scholar 

  72. Rakesh S, Dhar DW, Prasanna R, Saxena AK, Saha S, Shukla M, et al. Cell disruption methods for improving lipid extraction efficiency in unicellular microalgae. Eng Life Sci. 2015;15(4):443–7. https://doi.org/10.1002/elsc.201400222.

    Article  Google Scholar 

  73. Khot M, Ghosh D. Lipids of Rhodotorula mucilaginosa IIPL32 with biodiesel potential: oil yield, fatty acid profile, fuel properties. J Basic Microbiol. 2017;57(4):345–52. https://doi.org/10.1002/jobm.201600618.

    Article  Google Scholar 

  74. Bandhu S, Khot MB, Sharma T, Sharma OP, Dasgupta D, Mohapatra S, et al. Single cell oil from oleaginous yeast grown on sugarcane bagasse-derived xylose: an approach toward novel biolubricant for low friction and wear. ACS Sustain Chem Eng. 2018;6(1):275–83. https://doi.org/10.1021/acssuschemeng.7b02425.

    Article  Google Scholar 

  75. Singh O, Sharma T, Ghosh I, Dasgupta D, Vempatapu BP, Hazra S, et al. Converting lignocellulosic pentosan-derived yeast single cell oil into aromatics: biomass to bio-BTX. ACS Sustain Chem Eng. 2019;7(15):13437–45. https://doi.org/10.1021/acssuschemeng.9b02851.

    Article  Google Scholar 

  76. Kroha K. Industrial biotechnology provides opportunities for commercial production of new long-chain dibasic acids. Inform. 2004;15(9):568–71.

    Google Scholar 

  77. Xue Z, Sharpe PL, Hong SP, Yadav NS, Xie D, Short DR, et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol. 2013;31(8):734–40. https://doi.org/10.1038/nbt.2622.

    Article  Google Scholar 

  78. Ji XJ, Ren LJ, Huang H. Omega-3 biotechnology: a green and sustainable process for omega-3 fatty acids production. Front Bioeng Biotechnol. 2015;3:158. https://doi.org/10.3389/fbioe.2015.00158.

    Article  Google Scholar 

  79. Sun ML, Madzak C, Liu HH, Song P, Ren LJ, Huang H, et al. Engineering Yarrowia lipolytica for efficient γ-linolenic acid production. Biochem Eng J. 2017;117:172–80. https://doi.org/10.1016/j.bej.2016.10.014.

    Article  Google Scholar 

  80. • Vasconcelos B, Teixeira JC, Dragone G, Teixeira JA. Oleaginous yeasts for sustainable lipid production—from biodiesel to surf boards, a wide range of “green” applications. Appl Microbiol Biotechnol. 2019;103(9):3651–67. https://doi.org/10.1007/s00253-019-09742-xThe review discusses the potential of yeasts for production of variety of value-added products. A detailed discussion on the economics of the oleaginous yeast oil production and discussion on ways to enhance the economic viability of the process is provided.

    Article  Google Scholar 

  81. Steinbach D, Kruse A, Sauer J. Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production-a review. Biomass Convers Biorefinery. 2017;7(2):247–74. https://doi.org/10.1007/s13399-017-0243-0.

    Article  Google Scholar 

  82. Tan HW, Aziz AA, Aroua MK. Glycerol production and its applications as a raw material: a review. Renew Sust Energ Rev. 2013;27:118–27. https://doi.org/10.1016/j.rser.2013.06.035.

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the Indian institute of Technology, Delhi for Institute Post Doctoral Fellowship and Department of Science and Technology (under Govt. of India) for their financial support (SR/WOS-A/LS-38/2016) under the Women Scientist Scheme-A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheetal Bandhu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The references are incorrect and hence misleading. The original article has been corrected and shows the correct references.

This article is part of the Topical Collection on Bioconversion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandhu, S., Srivastava, A., Ghosh, D. et al. Yeast Single Cell Oils from Bioresources: Current Developments in Production and Applications. Curr Sustainable Renewable Energy Rep 7, 109–120 (2020). https://doi.org/10.1007/s40518-020-00160-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40518-020-00160-6

Keywords

Navigation