Skip to main content
Log in

The Moroccan Pomegranate: An Underrated Source of Tannins Extracts and Natural Antimicrobials from Juice Processing Byproducts

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose The pomegranate juice manufacturing industry produces vast quantities of non-edible portions of fruit as a by-product. The rind is a good source of many beneficial functional components, especially polyphenols and in particular tannins. This research was undertaken to expose the presence of active substances, including tannin compounds, in the crude extracts (aqueous (AE) and methanolic (ME)) and their fractions increasing in polarity, from Moroccan pomegranate rind samples.

Methods To describe the molecular distribution of tannin content in crude extracts, steric exclusion chromatography (SEC) on Sephadex gel 50 was carried out. In addition, their antimicrobial properties were tested using agar diffusion, dispersion, and microdilution methods against the bacterial strains Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and the yeast strains Saccharomyces cerevisiae and Candida tropicalis.

Results For both crude extracts, the SEC showed qualitative and quantitative differences in tannin polymerization. Diameters of inhibition zones (DIZ) obtained against bacterial species ranged from 20.6 to 30.3 mm for ME, from 10.8 to 15.3 mm for AE and from 0 to 16.6 mm for fractions. Among the selected fungal cultures, the highest antifungal activity was reported against S. cerevisiae; with an inhibition rate (I %) ranging up to 99.00% for AE. With I % reaching up to 93.35%, the C. tropicalis strain was more sensitive to ME, although the AE has no inhibitory effect on this yeast. For fractions, the I % ranged from 7.03 to 98.03% where a synergistic antifungal effect was observed between fractions.

Conclusion Pomegranate processing by-product is a potential source which could be used as natural preservatives in food industry and non-toxic matrices replacing hazardous materials in surface treatment.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PRP:

Pomegranate rind powder

DM:

Dry matter

ME:

Methanolic extract

AE:

Aqueous extract

HF:

Hexane fraction

CF:

Chloroform fraction

BF:

Butanol fraction from ME

EAF:

Ethyl acetate fraction

BF′:

Butanol fraction from AE

MIC:

Minimal inhibitory concentration

References

  1. Jiménez-Moreno, N., Esparza, I., Bimbela, F., Gandía, L.M., Ancín-Azpilicueta, C.: Valorization of selected fruit and vegetable wastes as bioactive compounds: Opportunities and challenges. Crit. Rev. Environ. Sci. Technol. 50, 1–48 (2020). https://doi.org/10.1080/10643389.2019.1694819

    Article  Google Scholar 

  2. Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A.F., Arora, A.: Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem. 225, 10–22 (2017). https://doi.org/10.1016/j.foodchem.2016.12.093

    Article  Google Scholar 

  3. Laufenberg, G., Kunz, B., Nystroem, M.: Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresour. Technol. 87, 167–198 (2003). https://doi.org/10.1016/S0960-8524(02)00167-0

    Article  Google Scholar 

  4. Parfitt, J., Barthel, M., Macnaughton, S.: Food waste within food supply chains: quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 365, 3065–3081 (2010). https://doi.org/10.1098/rstb.2010.0126

    Article  Google Scholar 

  5. Wu, V.C.-H., Qiu, X., Bushway, A., Harper, L.: Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. LWT - Food Sci. Technol. 41, 1834–1841 (2008). https://doi.org/10.1016/j.lwt.2008.01.001

    Article  Google Scholar 

  6. Sharif, M.K., Khalid, R.: Chapter 1–Nutraceuticals: Myths Versus Realities. In: Holban, A.M., Grumezescu, A.M. (eds.) Therapeutic Foods, pp. 3–21. Academic Press, Cambridge (2018)

    Chapter  Google Scholar 

  7. Qu, W., Pan, Z., Zhang, R., Ma, H., Chen, X., Zhu, B., Wang, Z., Atungulu, G.G.: Integrated Extraction and Anaerobic Digestion Process for Recovery of Nutraceuticals and Biogas from Pomegranate Marc. Trans. ASABE. 52, 1997–2006 (2009). https://doi.org/10.13031/2013.29196

    Article  Google Scholar 

  8. Talekar, S., Patti, A.F., Singh, R., Vijayraghavan, R., Arora, A.: From waste to wealth: High recovery of nutraceuticals from pomegranate seed waste using a green extraction process. Ind. Crops Prod. 112, 790–802 (2018). https://doi.org/10.1016/j.indcrop.2017.12.023

    Article  Google Scholar 

  9. Ashton, R.W.: The incredible pomegranate: plant and fruit. Third Millennium Publishing, Tempe, AZ (2006)

    Google Scholar 

  10. Macheix, J.-J., Fleuriet, A., Jay-Allemand, C.: Les composés phénoliques des végétaux: un exemple de métabolites secondaires d’importance économique. PPUR presses polytechniques, Lausanne (2005)

    Google Scholar 

  11. Lairini, S., Bouslamti, R., Zerrouq, F.: Enhancement of the aqueous extract of the bark of Punica granatum fruit through the study of its antimicrobial and antioxidant activities. J Mater Environ Sci. 5, 2314–2318 (2014)

    Google Scholar 

  12. Braga, L.C., Leite, A.A.M., Xavier, K.G.S., Takahashi, J.A., Bemquerer, M.P., Chartone-Souza, E., Nascimento, A.M.A.: Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can. J. Microbiol. 51, 541–547 (2005). https://doi.org/10.1139/w05-022

    Article  Google Scholar 

  13. Loizzo, M.R., Aiello, F., Tenuta, M.C., Leporini, M., Falco, T., Tundis, R.: Pomegranate (Punica granatum L,). In: Nabavi, S.M., Silva, A.S. (eds.) Nonvitamin and Nonmineral Nutritional Supplements, Chapter 3.46, pp. 467–472. Academic Press, Cambridge (2019)

    Google Scholar 

  14. Malik, A., Afaq, F., Sarfaraz, S., Adhami, V.M., Syed, D.N., Mukhtar, H.: Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer. Proc. Natl. Acad. Sci. 102, 14813–14818 (2005). https://doi.org/10.1073/pnas.0505870102

    Article  Google Scholar 

  15. Akesbi, N.: Une nouvelle stratégie pour l’agriculture marocaine: Le «Plan Maroc Vert». New Medit: Mediterranean Journal of Economics, Agriculture and Environment = Revue Méditerranéenne dʹEconomie Agriculture et Environment. 11, 12 (2012)

    Google Scholar 

  16. Ismail, T., Akhtar, R., Riaz, M., Ismail, A.: Effect of pomegranate peel supplementation on nutritional, organoleptic and stability properties of cookies. Int. J. Food Sci. Nutr. 65, 661–666 (2014). https://doi.org/10.3109/09637486.2014.908170

    Article  Google Scholar 

  17. Tzulker, R., Glazer, I., Bar-Ilan, I., Holland, D., Aviram, M., Amir, R.: Antioxidant Activity, Polyphenol Content, and Related Compounds in Different Fruit Juices and Homogenates Prepared from 29 Different Pomegranate Accessions. J. Agric. Food Chem. 55, 9559–9570 (2007). https://doi.org/10.1021/jf071413n

    Article  Google Scholar 

  18. Ben-Ali, S., Akermi, A., Mabrouk, M., Ouederni, A.: Optimization of extraction process and chemical characterization of pomegranate peel extract. Chem. Pap. 72, 2087–2100 (2018). https://doi.org/10.1007/s11696-018-0427-5

    Article  Google Scholar 

  19. Lansky, E.P., Newman, R.A.: Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol. 109, 177–206 (2007). https://doi.org/10.1016/j.jep.2006.09.006

    Article  Google Scholar 

  20. Xi, J., He, L., Yan, L.: Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge. Food Chem. 230, 354–361 (2017). https://doi.org/10.1016/j.foodchem.2017.03.072

    Article  Google Scholar 

  21. Qu, W., Pan, Z., Ma, H.: Extraction modeling and activities of antioxidants from pomegranate marc. J. Food Eng. 99, 16–23 (2010). https://doi.org/10.1016/j.jfoodeng.2010.01.020

    Article  Google Scholar 

  22. Growther, L.: Antibacterial activity of punica granatum peel extracts against shiga toxin producing e. COLI. Pharm Res. 1, 9 (2012)

    Google Scholar 

  23. Aziz, Md.A.: Qualitative phytochemical screening and evaluation of anti-inflammatory, analgesic and antipyretic activities of Microcos paniculata barks and fruits. J. Integr. Med. 13, 173–184 (2015). https://doi.org/10.1016/S2095-4964(15)60179-0

    Article  Google Scholar 

  24. Raaman, N.: Phytochemical Techniques. New India Publishing Agency, Pitam Pura, New Delhi (2006)

    Google Scholar 

  25. Firdouse, S., Alam, P.: Phytochemical investigation of extract of Amorphophallus campanulatus tubers. International Journal of Phytomedicine. 3, 32–35 (2011)

    Google Scholar 

  26. Harborne, A.J.: Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. Springer Science & Business Media, Berlin (1998)

    Google Scholar 

  27. Hossain, M.A., AL-Raqmi, K.A.S., AL-Mijizy, Z.H., Weli, A.M., Al-Riyami, Q.: Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac. J. Trop. Biomed. 3, 705–710 (2013). https://doi.org/10.1016/S2221-1691(13)60142-2

    Article  Google Scholar 

  28. Rigane, H., Chtourou, M., Ben Mahmoud, I., Medhioub, K., Ammar, E.: Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia). Waste Manag. Res. 33, 73–80 (2015). https://doi.org/10.1177/0734242X14559594

    Article  Google Scholar 

  29. European Committee for Antimicrobial Susceptibility Testing (EUCAST): Determination of minimum inhibitory concentration (MICs) of antibacterial agents by agar dilution. Clin. Microbiol. Infect. 12, 509–515 (2000). https://doi.org/10.1111/j.1469-0691.2006.01454.x

    Article  Google Scholar 

  30. Li, X., Lu, X., He, Y., Deng, M., Lv, Y.: Identification the Pathogens Causing Rot Disease in Pomegranate (Punica granatum L) in China and the Antifungal Activity of Aqueous Garlic Extract. Forests. 11, 34 (2019). https://doi.org/10.3390/f11010034

    Article  Google Scholar 

  31. Obied, H.K., Allen, M.S., Bedgood, D.R., Prenzler, P.D., Robards, K., Stockmann, R.: Bioactivity and Analysis of Biophenols Recovered from Olive Mill Waste. J. Agric. Food Chem. 53, 823–837 (2005). https://doi.org/10.1021/jf048569x

    Article  Google Scholar 

  32. Ismail, T., Sestili, P., Akhtar, S.: Pomegranate peel and fruit extracts: A review of potential anti-inflammatory and anti-infective effects. J. Ethnopharmacol. 143, 397–405 (2012). https://doi.org/10.1016/j.jep.2012.07.004

    Article  Google Scholar 

  33. Kahramanoglu, I., Usanmaz, S.: Pomegranate Production and Marketing. CRC Press, Boco raton (2016)

    Book  Google Scholar 

  34. Redha, A.A.A., Hasan, A.M., Mandeel, Q.: Phytochemical Determinations of Pomegranate (Punica granatum) Rind and Aril Extracts and their Antioxidant, Antidiabetic and Antibacterial Activity. Nat. Prod. Chem. Res. 06, 1–9 (2018). https://doi.org/10.4172/2329-6836.1000332

    Article  Google Scholar 

  35. Al-Zoreky, N.S.: Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol. 134, 244–248 (2009). https://doi.org/10.1016/j.ijfoodmicro.2009.07.002

    Article  Google Scholar 

  36. Akhtar, S., Ismail, T., Fraternale, D., Sestili, P.: Pomegranate peel and peel extracts: Chemistry and food features. Food Chem. 174, 417–425 (2015). https://doi.org/10.1016/j.foodchem.2014.11.035

    Article  Google Scholar 

  37. Zhao, X., Yuan, Z., Fang, Y., et al.: Characterization and evaluation of major anthocyanins in pomegranate (Punica granatum L.) peel of different cultivars and their development phases. Eur Food Res Technol. 236, 109–117 (2013). https://doi.org/10.1007/s00217-012-1869-6

    Article  Google Scholar 

  38. El Houda, N., Douaouri, N.D.: In vivo anti-inflammatory activity and chemical composition of Algerian pomegranate (Punica granatum L.). Int. J. Biosci. IJB. 12, 76–90 (2018). https://doi.org/10.12692/ijb/12.2.76-90

    Article  Google Scholar 

  39. Elfalleh, W., Tlili, N., Nasri, N., Yahia, Y., Hannachi, H., Chaira, N., Ying, M., Ferchichi, A.: Antioxidant Capacities of Phenolic Compounds and Tocopherols from Tunisian Pomegranate (Punica granatum) Fruits. J. Food Sci. 76, C707–C713 (2011). https://doi.org/10.1111/j.1750-3841.2011.02179.x

    Article  Google Scholar 

  40. Farag, R.S., Abdel-Latif, M.S., Emam, S., Tawfeek, S.: Phytochemical screening and polyphenol constituents of pomegranate peels and leave juices. Agriculture and Soil Sciences (LRJASS). 1, 086–093 (2014)

    Google Scholar 

  41. Ahmed, E.: Abdel Moneim: Antioxidant activities of Punica granatum (pomegranate) peel extract on brain of rats. J. Med. Plants Res. 6, 195–199 (2012). https://doi.org/10.5897/JMPR11.500

    Article  Google Scholar 

  42. Orak, H.H., Yagar, H., Isbilir, S.S.: Comparison of antioxidant activities of juice, peel, and seed of pomegranate (Punica granatum L.) and inter-relationships with total phenolic, Tannin, anthocyanin, and flavonoid contents. Food Sci. Biotechnol. 21, 373–387 (2012). https://doi.org/10.1007/s10068-012-0049-6

    Article  Google Scholar 

  43. Masci, A., Coccia, A., Lendaro, E., Mosca, L., Paolicelli, P., Cesa, S.: Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction. Food Chem. 202, 59–69 (2016). https://doi.org/10.1016/j.foodchem.2016.01.106

    Article  Google Scholar 

  44. Kharchoufi, S., Licciardello, F., Siracusa, L., Muratore, G., Hamdi, M., Restuccia, C.: Antimicrobial and antioxidant features of ‘Gabsiʼ pomegranate peel extracts. Ind. Crops Prod. 111, 345–352 (2018). https://doi.org/10.1016/j.indcrop.2017.10.037

    Article  Google Scholar 

  45. Procópio Gomes, L.A., Alves Figueiredo, L.M., do Rosário Palma, A.L., Corrêa Geraldo, B.M., Isler Castro, K.C., de Oliveira Fugisaki, L.R., Jorge, A.O.C., de Oliveira, L.D., Junqueira, J.C.: Punica granatum L (Pomegranate) Extract In Vivo Study of Antimicrobial Activity against Porphyromonas gingivalis in Galleria mellonella Model. Sci. World J. (2016). https://doi.org/10.1155/2016/8626987

    Article  Google Scholar 

  46. Tian, F., Li, B., Ji, B., Zhang, G., Luo, Y.: Identification and structure–activity relationship of gallotannins separated from Galla chinensis. LWT - Food Sci. Technol. 42, 1289–1295 (2009). https://doi.org/10.1016/j.lwt.2009.03.004

    Article  Google Scholar 

  47. Weissmann, G.: Studies on pine bark extracts. Int. J. Adhes. Adhes. 3, 31–35 (1983). https://doi.org/10.1016/0143-7496(83)90050-7

    Article  Google Scholar 

  48. Çam, M., Hışıl, Y.: Pressurised water extraction of polyphenols from pomegranate peels. Food Chem. 123, 878–885 (2010). https://doi.org/10.1016/j.foodchem.2010.05.011

    Article  Google Scholar 

  49. Saad, H., Charrier-El Bouhtoury, F., Pizzi, A., Rode, K., Charrier, B., Ayed, N.: Characterization of pomegranate peels tannin extractives. Ind. Crops Prod. 40, 239–246 (2012). https://doi.org/10.1016/j.indcrop.2012.02.038

    Article  Google Scholar 

  50. Díaz-Mula, H.M., Tomás-Barberán, F.A., García-Villalba, R.: Pomegranate Fruit and Juice (cv. Mollar), Rich in Ellagitannins and Anthocyanins, Also Provide a Significant Content of a Wide Range of Proanthocyanidins. J. Agric. Food Chem. 67, 9160–9167 (2019). https://doi.org/10.1021/acs.jafc.8b07155

    Article  Google Scholar 

  51. Field, J.A., Lettinga, G.: Toxicity of Tannic Compounds to Microorganisms. In: Hemingway, R.W., Laks, P.E. (eds.) Plant Polyphenols, pp. 673–692. Springer, US, Boston, MA (1992)

    Chapter  Google Scholar 

  52. Rosas-Burgos, E.C., Burgos-Hernández, A., Noguera-Artiaga, L., Kačániová, M., Hernández-García, F., Cárdenas-López, J.L., Carbonell-Barrachina, Á.A.: Antimicrobial activity of pomegranate peel extracts as affected by cultivar: Pomegranate antimicrobial activity. J. Sci. Food Agric. 97, 802–810 (2017). https://doi.org/10.1002/jsfa.7799

    Article  Google Scholar 

  53. Ferrazzano, G.F., Scioscia, E., Sateriale, D., Pastore, G., Colicchio, R., Pagliuca, C., Cantile, T., Alcidi, B., Coda, M., Ingenito, A., Scaglione, E., Cicatiello, A.G., Volpe, M.G., Di Stasio, M., Salvatore, P., Pagliarulo, C.: In Vitro Antibacterial Activity of Pomegranate Juice and Peel Extracts on Cariogenic Bacteria. BioMed Res. Int (2017). https://doi.org/10.1155/2017/2152749

    Article  Google Scholar 

  54. Alexandre, E.M.C., Silva, S., Santos, S.A.O., Silvestre, A.J.D., Duarte, M.F., Saraiva, J.A., Pintado, M.: Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food Res. Int. 115, 167–176 (2019). https://doi.org/10.1016/j.foodres.2018.08.044

    Article  Google Scholar 

  55. Hayouni, E.A., Miled, K., Boubaker, S., Bellasfar, Z., Abedrabba, M., Iwaski, H., Oku, H., Matsui, T., Limam, F., Hamdi, M.: Hydroalcoholic extract based-ointment from Punica granatum L. peels with enhanced in vivo healing potential on dermal wounds. Phytomedicine 18, 976–984 (2011). https://doi.org/10.1016/j.phymed.2011.02.011

    Article  Google Scholar 

  56. Gullon, B., Pintado, M.E., Pérez-Álvarez, J.A., Viuda-Martos, M.: Assessment of polyphenolic profile and antibacterial activity of pomegranate peel (Punica granatum) flour obtained from co-product of juice extraction. Food Control 59, 94–98 (2016). https://doi.org/10.1016/j.foodcont.2015.05.025

    Article  Google Scholar 

  57. Saleem, M., Saeed, M.T.: Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. J. King Saud Univ. - Sci. 32, 805–810 (2020). https://doi.org/10.1016/j.jksus.2019.02.013

    Article  Google Scholar 

  58. Naz, S., Siddiqi, R., Ahmad, S., Rasool, S.A., Sayeed, S.A.: Antibacterial Activity Directed Isolation of Compounds from Punica granatum. J. Food Sci. 72, M341–M345 (2007). https://doi.org/10.1111/j.1750-3841.2007.00533.x

    Article  Google Scholar 

  59. Akiyama, H., Fujii, K., Yamasaki, O., Oono, T., Iwatsuki, K.: Antibacterial action of several tannins against Staphylococcus aureus. J. Antimicrob. Chemother. 48, 487–491 (2001)

    Article  Google Scholar 

  60. Engels, C., Schieber, A., Gänzle, M.G.: Inhibitory spectra and modes of antimicrobial action of gallotannins from mango kernels (Mangifera indica L.). Appl. Environ. Microbiol. 77, 2215–2223 (2011). https://doi.org/10.1128/AEM.02521-10

    Article  Google Scholar 

  61. Widsten, P., Cruz, C.D., Fletcher, G.C., Pajak, M.A., McGhie, T.K.: Tannins and Extracts of Fruit Byproducts: Antibacterial Activity against Foodborne Bacteria and Antioxidant Capacity. J. Agric. Food Chem. 62, 11146–11156 (2014). https://doi.org/10.1021/jf503819t

    Article  Google Scholar 

  62. Fattouch, S., Caboni, P., Coroneo, V., Tuberoso, C., Angioni, A., Dessi, S., Marzouki, N., Cabras, P.: Comparative Analysis of Polyphenolic Profiles and Antioxidant and Antimicrobial Activities of Tunisian Pome Fruit Pulp and Peel Aqueous Acetone Extracts. J. Agric. Food Chem. 56, 1084–1090 (2008). https://doi.org/10.1021/jf072409e

    Article  Google Scholar 

  63. Akinyele, T.A., Okoh, O.O., Akinpelu, D.A., Okoh, A.I.: In-Vitro Antibacterial Properties of Crude Aqueous and n-Hexane Extracts of the Husk of Cocos nucifera. Molecules 16, 2135–2145 (2011). https://doi.org/10.3390/molecules16032135

    Article  Google Scholar 

  64. Pfaller, M.A., Diekema, D.J.: Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem. Clin. Microbiol. Rev. 20, 133–163 (2007). https://doi.org/10.1128/CMR.00029-06

    Article  Google Scholar 

  65. Ishida, K., de Mello, J.C.P., Cortez, D.A.G., Filho, B.P.D., Ueda-Nakamura, T., Nakamura, C.V.: Influence of tannins from Stryphnodendron adstringens on growth and virulence factors of Candida albicans. J. Antimicrob. Chemother. 58, 942–949 (2006). https://doi.org/10.1093/jac/dkl377

    Article  Google Scholar 

  66. Mendes de Toledo, C.E., Santos, P.R., Palazzo de Mello, J.C., Dias Filho, B.P., Nakamura, C.V., Ueda-Nakamura, T.: Antifungal Properties of Crude Extracts, Fractions, and Purified Compounds from Bark of Curatella americana L. (Dilleniaceae) against Candida Species. Evid Based Complement Alternat Med (2015). https://doi.org/10.1155/2015/673962

    Article  Google Scholar 

  67. de Souza, C., Vasconcelos, L., Sampaio, M.C.C., Sampaio, F.C., Higino, J.S.: Use of Punica granatum as an antifungal agent against candidosis associated with denture stomatitis. Verwendung von Punica granatum als Antimykotikum gegen Candidose in Verbindung mit Zahnprothesen-Stomatitis. Mycoses 46, 192–196 (2003). https://doi.org/10.1046/j.1439-0507.2003.00884.x

    Article  Google Scholar 

  68. Anibal, P.C., Peixoto, I.T.A., Foglio, M.A., Höfling, J.F.: Antifungal activity of the ethanolic extracts of Punica granatum L. and evaluation of the morphological and structural modifications of its compounds upon the cells of Candida spp. Braz. J. Microbiol. 44, 839–848 (2013). https://doi.org/10.1590/S1517-83822013005000060

    Article  Google Scholar 

  69. Reddy, M., Gupta, S., Jacob, M., Khan, S., Ferreira, D.: Antioxidant, Antimalarial and Antimicrobial Activities of Tannin-Rich Fractions, Ellagitannins and Phenolic Acids from Punica granatum L. Planta Med. 73, 461–467 (2007). https://doi.org/10.1055/s-2007-967167

    Article  Google Scholar 

  70. Scalbert, A.: Antimicrobial properties of tannins. Phytochemistry 30, 3875–3883 (1991). https://doi.org/10.1016/0031-9422(91)83426-L

    Article  Google Scholar 

  71. Edwin, H.: Natural Polyphenols (Vegetable Tannins) as Drugs: Possible Modes of Action. J. Nat. Prod. 59, 205–215 (1996)

    Article  Google Scholar 

  72. Salmon, J.-M.: Interactions between yeast, oxygen and polyphenols during alcoholic fermentations: Practical implications. LWT - Food Sci. Technol. 39, 959–965 (2006). https://doi.org/10.1016/j.lwt.2005.11.005

    Article  Google Scholar 

  73. Devatine, A., Chiciuc, I., Poupot, C., Mietton-Peuchot, M.: Micro-oxygenation of wine in presence of dissolved carbon dioxide. Chem. Eng. Sci. 62, 4579–4588 (2007). https://doi.org/10.1016/j.ces.2007.05.031

    Article  Google Scholar 

  74. Picataggio, S., Rohrer, T., Deanda, K., Lanning, D., Reynolds, R., Mielenz, J., Eirich, L.D.: Metabolic Engineering of Candida Tropicalis for the Production of Long-Chain Dicarboxylic Acids. Nat. Biotechnol. 10, 894–898 (1992). https://doi.org/10.1038/nbt0892-894

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Pr. Abdelmajid DARI for providing advice, scientific help and technical support. Also we are grateful for the scientific support provided by Dr. Said Ezrari to realize the statistical analysis and thankful to all those who directly or indirectly contributed to this research, in particular the kind reviewer and the Editor.

Funding

The financial assistance of Sidi Mohamed Ben Abdellah University (Laboratory of applied chemistry and laboratory of Functional Ecology and Environment) towards this research is hereby acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara El moujahed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El moujahed, S., Chahdi, F.O., Rodi, Y.K. et al. The Moroccan Pomegranate: An Underrated Source of Tannins Extracts and Natural Antimicrobials from Juice Processing Byproducts. Waste Biomass Valor 12, 5383–5399 (2021). https://doi.org/10.1007/s12649-021-01413-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01413-1

Keywords

Navigation