Skip to main content
Log in

Extraction and applications of lignin from bamboo: a critical review

  • Review Article
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Bamboo, commonly known as green gold, has various advantages like its quick proliferation, requires no irrigation, replanting is not necessary, can be grown without fertilizers, and can be easily harvested in 3–5 years. The primary chemical constituents of bamboo consist of lignin, cellulose, and hemicellulose. Its better properties and easy availability attract researchers and scientists globally to extract lignin from bamboo. Lignin has various unique characteristics, including biocompatibility, antioxidant, antimicrobial, redox activity, etc. Thus, it has opened a new field of research and development, having a laser-sharp focus on the lignin-derived advanced bio- and nanomaterials. This review highlights a detailed and comprehensive description of bamboo and lignin and discusses the successful utilization of bamboo for extracting lignin. Various researchers using different bamboo species to extract lignin are summarized. Mainly the culms of bamboo species like Neosinocalamus affinis, Bambusa rigida, Dendrocalamus brandisii, Pleioblastus amarus, Dendrocalamus sinicus, Gigantochloa scortechinii, Gigantochloa levis, and Phyllostachys edulis, were exploited to extract lignin. This review focused on the various chemical technologies used for lignin extraction like hydrothermal pretreatment processes, biochar-catalytic degradation, soda pulping extraction, microwave-assisted extraction, and ultrasonic-assisted extraction. A separate section is emphasized for materials perspective status and future work, which helps in featuring all the possible fields in which bamboo lignin widened the research paths. Thus, the review enables the global reader to ignite a deep sense of knowledge to create bamboo and lignin-based research innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Panee 2015)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmaruzzaman M (2011) Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv Coll Interface Sci 166(1–2):36–59

    Article  CAS  Google Scholar 

  • Akwada DR, Akinlabi ET (2016) Economic, social and environmental assessment of bamboo for infrastructure development. In: 5th international conference on infrastructure development in Africa July in Johannesburg, South Africa

  • Alzagameem A, Klein SE, Bergs M, Do XT, Korte I, Dohlen S, Schulze M (2019) Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polymers 11(4):670

    Article  CAS  PubMed Central  Google Scholar 

  • Anonymous (2021a) Brief summary of how bamboo grows: https://lewisbamboo.com/bamboo-basics/ [Accessed on Feb 4, 2021]

  • Anonymous (2021b) Lignin structure, properties, function and uses http://www.pulppapermill.com/lignin-structure-properties-function-and-uses/ [Accessed on Feb 4, 2021]

  • Anonymous (2021c) Lignin applications brief overview http://biorefinery.utk.edu/technical_reviews/Lignin%20Applications2.pdf [Accessed on Feb 21, 2021]

  • Bai YY, Xiao LP, Shi ZJ, Sun RC (2013) Structural variation of bamboo lignin before and after ethanol organosolv pretreatment. Int J Mol Sci 14(11):21394–21413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark LG, Londoño X, Ruiz-Sanchez E (2015) Bamboo taxonomy and habitat. Bamboo. Springer, Cham, pp 1–30

    Google Scholar 

  • Dixon PG, Semple KE, Kutnar A, Kamke FA, Smith GD, Gibson LJ (2016) Comparison of the flexural behavior of natural and thermo-hydro-mechanically densified Moso bamboo. Eur J Wood Prod 74(5):633–642

    Article  CAS  Google Scholar 

  • El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polym Degrad Stab 94(10):1632–1638

    Article  CAS  Google Scholar 

  • El Mansouri NE, Yuan Q, Huang F (2011) Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins. BioResources 6(3):2647–2662

    Google Scholar 

  • Fang CH, Jiang ZH, Sun ZJ, Liu HR, Zhang XB, Zhang R, Fei BH (2018) An overview on bamboo culm flattening. Constr Build Mater 171:65–74

    Article  Google Scholar 

  • Faruk O, Obaid N, Tjong J, Sain M (2016) 6-lignin reinforcement in thermoplastic composites. Lignin in Polymer Composites, William Andrew Publishing, New York City, United States, pp 95–118. https://doi.org/10.1016/B978-0-323-35565-0.00006-0

    Book  Google Scholar 

  • Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA, Santos HA (2018) Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog Mater Sci 93:233–269

    Article  CAS  Google Scholar 

  • Galkin MV, Samec JS (2016) Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. Chemsuschem 9(13):1544–1558

    Article  CAS  PubMed  Google Scholar 

  • Gong W, Ran Z, Ye F, Zhao G (2017) Lignin from bamboo shoot shells as an activator and novel immobilizing support for α-amylase. Food Chem 228:455–462

    Article  CAS  PubMed  Google Scholar 

  • Gosselink RJA, Snijder MHB, Kranenbarg A, Keijsers ERP, De Jong E, Stigsson LL (2004) Characterisation and application of NovaFiber lignin. Ind Crops Prod 20(2):191–203

    Article  CAS  Google Scholar 

  • Huang C, He J, Min D, Lai C, Yong Q (2016) Understanding the nonproductive enzyme adsorption and physicochemical properties of residual lignins in moso bamboo pretreated with sulfuric acid and kraft pulping. Appl Biochem Biotechnol 180(8):1508–1523

    Article  CAS  PubMed  Google Scholar 

  • Iravani S (2020) Biomedical applications of lignin-based nanoparticles. In: Shukla AK (ed) Nanoparticles and their biomedical applications. Springer Singapore, Singapore, pp 217–224. https://doi.org/10.1007/978-981-15-0391-7_8

    Chapter  Google Scholar 

  • Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40(15):2913–2920

    Article  CAS  Google Scholar 

  • Kalali EN, Hu Y, Wang X, Song L, Xing W (2019) Highly-aligned cellulose fibers reinforced epoxy composites derived from bulk natural bamboo. Ind Crops Prod 129:434–439

    Article  CAS  Google Scholar 

  • Katahira R, Elder TJ, Beckham GT (2018) Chapter 1 a brief introduction to lignin structure, lignin valorization: emerging approaches. Roy Soc Chem 1–20. https://doi.org/10.1039/9781788010351-00001

  • Kumar A, Vlach T, Laiblova L, Hrouda M, Kasal B, Tywoniak J, Hajek P (2016) Engineered bamboo scrimber: Influence of density on the mechanical and water absorption properties. Constr Build Mater 127:815–827

    Article  Google Scholar 

  • Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290

    Article  CAS  Google Scholar 

  • Lee CH, Yang TH, Cheng YW, Lee CJ (2018) Effects of thermal modification on the surface and chemical properties of moso bamboo. Constr Build Mater 178:59–71

    Article  CAS  Google Scholar 

  • Li MF, Fan YM, Xu F, Sun RC (2010) Characterization of extracted lignin of bamboo (Neosinocalamus affinis) pretreated with sodium hydroxide/urea solution at low temperature. BioResources 5(3):1762–1778

    CAS  Google Scholar 

  • Li MF, Sun SN, Xu F, Sun RC (2012a) Microwave-assisted organic acid extraction of lignin from bamboo: structure and antioxidant activity investigation. Food Chem 134(3):1392–1398

    Article  CAS  PubMed  Google Scholar 

  • Li MF, Sun SN, Xu F, Sun RC (2012b) Ultrasound-enhanced extraction of lignin from bamboo (Neosinocalamus affinis): characterization of the ethanol-soluble fractions. Ultrason Sonochem 19(2):243–249

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen CZ, Li MF (2015) Structural Characterization of bamboo lignin isolated with formic acid and alkaline peroxide by gel permeation chromatography and pyrolysis gas chromatography mass spectrometry. Ann Chromatogr Sep Tech 1(2):1006

    Article  Google Scholar 

  • Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19(2):335

    Article  PubMed Central  CAS  Google Scholar 

  • Liu R, Dai L, Xu C, Wang K, Zheng C, Si C (2020) Lignin-based micro-and nanomaterials and their composites in biomedical applications. Chemsuschem 13(17):4266–4283

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Wu X, Shi J, Dong Y, Zhang Y (2006) Toxicology and safety of antioxidant of bamboo leaves. Part 2: developmental toxicity test in rats with antioxidant of bamboo leaves. Food Chem Toxicol 44(10):1739–1743

    Article  CAS  PubMed  Google Scholar 

  • Mahmood Z, Yameen M, Jahangeer MRM, Riaz M, Ghaffar A, Javid I (2018) Lignin as natural antioxidant capacity. Lignin Trends Appl. https://doi.org/10.5772/intechopen.73284

    Article  Google Scholar 

  • Mera FAT, Xu C (2014) Plantation management and bamboo resource economics in China. Ciencia Sociales Económic 7(1):1–12

    Google Scholar 

  • Mili M, Verma S, Hashmi SAR, Gupta RK, Naik A, Rathore SKS, Srivastava AK (2021) Development of advanced bamboo stem derived chemically designed material. J Polym Res 28(5):1–11

    Article  CAS  Google Scholar 

  • Nayak L, Mishra SP (2016) Prospect of bamboo as a renewable textile fiber, historical overview, labeling, controversies and regulation. Fash Text 3(1):1–23

    Article  Google Scholar 

  • Nirmala C, Bisht MS, Bajwa HK, Santosh O (2018) Bamboo: a rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends Food Sci Technol 77:91–99

    Article  CAS  Google Scholar 

  • Osman S, Ahmad M (2018) Chemical and thermal characterization of Malaysian bamboo lignin (Beting and Semantan) extracted via soda pulping method. In AIP Conference Proceedings, AIP Publishing LLC, 1985(1): 050002

  • Panee J (2015) Potential medicinal application and toxicity evaluation of extracts from bamboo plants. J Med Plant Res 9(23):681

    Article  PubMed  PubMed Central  Google Scholar 

  • Parvathy G, Sethulekshmi AS, Jayan JS, Raman A, Saritha A (2021) Lignin based nano-composites: synthesis and applications. Proc Safety Environ Protect 145:395–410

    Article  CAS  Google Scholar 

  • Qin Z, Liu HM, Gu LB, Sun RC, Wang XD (2020) Lignin as a natural antioxidant: property-structure relationship and potential applications. In: Gutiérrez TJ (ed) Reactive and functional polymers, vol 1. Springer, Cham, pp 65–93

  • Sannigrahi P, Ragauskas AJ, Miller SJ (2010) Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy Fuels 24(1):683–689

    Article  CAS  Google Scholar 

  • Sen S, Patil S, Argyropoulos DS (2015) Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem 17(11):4862–4887

    Article  CAS  Google Scholar 

  • Shan B, Cai YZ, Brooks JD, Corke H (2008) Antibacterial properties of Polygonum cuspidatum roots and their major bioactive constituents. Food Chem 109(3):530–537

    Article  CAS  Google Scholar 

  • Sharma B, Gatóo A, Ramage MH (2015) Effect of processing methods on the mechanical properties of engineered bamboo. Constr Build Mater 83:95–101

    Article  Google Scholar 

  • Sharma B, Shah DU, Beaugrand J, Janeček ER, Scherman OA, Ramage MH (2018) Chemical composition of processed bamboo for structural applications. Cellulose 25(6):3255–3266

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Sharma A, Mulla SI, Pant D, Sharma T, Kumar A (2020) Lignin as potent industrial biopolymer: an introduction. In: Sharma S, Kumar A (eds) Lignin: biosynthesis and transformation for industrial applications. Springer International Publishing, Cham, pp 1–15

    Chapter  Google Scholar 

  • Tang T, Chen X, Zhang B, Liu X, Fei B (2019) Research on the physico-mechanical properties of moso bamboo with thermal treatment in tung oil and its influencing factors. Materials 12(4):599

    Article  CAS  PubMed Central  Google Scholar 

  • Tayier M, Zhao Y, Duan D, Zou R, Wang Y, Ruan R, Liu Y (2020) Bamboo biochar-catalytic degradation of lignin under microwave heating. J Wood Chem Technol 40(3):190–199

    Article  CAS  Google Scholar 

  • Terzioğlu P, Parın FN, Sıcak Y (2020) Lignin composites for biomedical applications: status, challenges and perspectives. In: Sharma S, Kumar A (eds) Lignin: biosynthesis and transformation for industrial applications. Springer International Publishing, pp 253–273. https://doi.org/10.1007/978-3-030-40663-9_9

  • Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sust Chem Eng 2(5):1072–1092

    Article  CAS  Google Scholar 

  • Vázquez G, Antorrena G, González J, Freire S (1997) The influence of pulping conditions on the structure of acetosolv eucalyptus lignins. J Wood Chem Technol 17(1–2):147–162

    Article  Google Scholar 

  • Vishtal AG, Kraslawski A (2011) Challenges in industrial applications of technical lignins. BioResources 6(3):3547–3568

    Article  Google Scholar 

  • Wen JL, Xue BL, Xu F, Sun RC, Pinkert A (2013) Unmasking the structural features and property of lignin from bamboo. Ind Crops Prod 42:332–343

    Article  CAS  Google Scholar 

  • Windeisen E, Wegener G (2012) Lignin as building unit for polymers. Polymer Sci 10:255–265

    Google Scholar 

  • Wörmeyer K, Ingram T, Saake B, Brunner G, Smirnova I (2011) Comparison of different pretreatment methods for lignocellulosic materials. Part II: influence of pretreatment on the properties of rye straw lignin. Bioresour Technol 102(5):4157–4164

    Article  PubMed  CAS  Google Scholar 

  • Wu K, Shi Z, Yang H, Liao Z, Yang J (2017) Effect of ethanol organosolv lignin from bamboo on enzymatic hydrolysis of avicel. ACS Sustain Chem Eng 5(2):1721–1729

    Article  CAS  Google Scholar 

  • Xu C, Ferdosian F (2017) Conversion of lignin into bio-based chemicals and materials. Springer, New York, pp 91–109

    Book  Google Scholar 

  • Xu G, Shi Z, Zhao Y, Deng J, Dong M, Liu C, Guo Z (2019) Structural characterization of lignin and its carbohydrate complexes isolated from bamboo (Dendrocalamus sinicus). Int J Biol Macromol 126:376–384

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Jin Y, Shi Z, Wang D, Zhao P, Yang J (2020) Effect of hydrothermal pretreated bamboo lignin on cellulose saccharification for bioethanol production. Indust Crops Prod 156:112865

    Article  CAS  Google Scholar 

  • Yuan Y, Guo M (2017) Do green wooden composites using lignin-based binder have environmentally benign alternatives? A preliminary LCA case study in China. Int J Life Cycle Assess 22(8):1318–1326

    Article  CAS  Google Scholar 

  • Zhu J, Yan C, Zhang X, Yang C, Jiang M, Zhang X (2020a) A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors. Prog Energy Combust Sci 76:100788

    Article  Google Scholar 

  • Zhu Y, Huang J, Wang K, Wang B, Sun S, Lin X, Li H (2020b) Characterization of lignin structures in Phyllostachys edulis (Moso bamboo) at different ages. Polymers 12(1):187

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CSIR, New Delhi, for the financial support (Project No. MLP 210) to author SARH. The authors are also thankful to Director CSIR-AMPRI Bhopal for providing necessary institutional facilities and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarika Verma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The authors declare no involvement of animal studies or human participants in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Hashmi, S.A.R., Mili, M. et al. Extraction and applications of lignin from bamboo: a critical review. Eur. J. Wood Prod. 79, 1341–1357 (2021). https://doi.org/10.1007/s00107-021-01743-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-021-01743-w

Navigation