Skip to main content

Algal Biomass for Biofuels and Bioproducts

  • Chapter
  • First Online:
Bioprocess Engineering for Bioremediation

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 104))

Abstract

In recent times, due to rapid consumption of fossil fuels and increased pollution levels, the demand for biofuels has been on raise. Currently the resources utilized for biofuel production are derived through conventional agriculture; it may pose a significant danger to food security. Switching over in the direction of third generation biofuels (from algae) is one among the best possible solutions for this problem. Moreover algae contain substantial quantity of carbohydrates, lipids, and proteins, thereby making them as a potential candidate for the manufacture of biofuels like bioethanol, biohydrogen, biodiesel, biobutanol, etc. Apart from biofuel production, algae can also be able to produce valuable products like omega-3 fatty acids, carotenoids, protein-rich supplements, etc. This chapter offers an insight into the modern practices being followed in the manufacture of biofuel like screening of potential strains, avoiding contamination risks, optimization of mass cultivation conditions, easy harvesting, and extraction methods. The key concerns of these process and opportunities on the employment of algal biomass in multiple applications like fuel, food, and environment will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

DAB:

Dry algal biomass

FAME:

Fatty acid methyl esters

HTL:

Hydrothermal liquefaction

PBR:

Photobioreactor

PUFA:

Polyunsaturated fatty acids

References

  1. Chi NTL, Duc PA, Mathimani T, Pugazhendhi A (2018) Evaluating the potential of green alga Chlorella sp. for high biomass and lipid production in biodiesel viewpoint. Biocatal Agric Biotechnol 17:184–188

    Google Scholar 

  2. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796–799

    CAS  PubMed  Google Scholar 

  3. Chisti Y (2007) Biodiesel from micro-algae. Biotechnol Adv 25:294–306

    CAS  PubMed  Google Scholar 

  4. Larkum AWD (2010) Limitation and prospects of natural photosynthesis for bio-energy production. Curr Opin Biotechnol 21:271–276

    CAS  PubMed  Google Scholar 

  5. Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–126

    CAS  Google Scholar 

  6. Fogliano V, Andreoli C, Martello A, Caiazzo M, Lobosco O, Formisano F, Carlino PA, Meca G, Graziani G, Rigano VM, Vona V, Carfagna S, Rigano C (2010) Functional ingredients produced by culture of Koliella Antarctica. Aquaculture 299:115–120

    CAS  Google Scholar 

  7. Sivakumar G, Xu J, Thompson RW, Yang Y, Smith PR, Weathers PG (2012) Integrated green algal technology for bioremediation and biofuel. Bioresour Technol 107:1–9

    CAS  PubMed  Google Scholar 

  8. Olguin EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30:1031–1046

    CAS  PubMed  Google Scholar 

  9. Vidyashankar S, VenuGopal KS, Chauhan VS, Muthukumar SP, Sarada R (2014) Characterisation of defatted Scenedesmus dimorphus algal biomass as animal feed. J Appl Phycol 27:1–9. https://doi.org/10.1007/s10811-014-0498-9

    Article  CAS  Google Scholar 

  10. Barry A, Wolfe A, English C, Ruddick C, Lambert D (2016) National algal biofuels technology review, 2016. USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B)

    Google Scholar 

  11. Hochman G, Zilberman D (2014) Algae farming and its bio-products. In: Plants and bioenergy. Springer, New York, pp 49–64

    Google Scholar 

  12. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Appl Phycol 21:493–507

    CAS  Google Scholar 

  13. Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028

    CAS  PubMed  Google Scholar 

  14. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14(3):1037–1047

    CAS  Google Scholar 

  15. Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13(4):307–315

    Google Scholar 

  16. Hase R, Oikawa H, Sasao C, Morita M, Watanabe Y (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai City. J Biosci Bioeng 89(2):157–163

    CAS  PubMed  Google Scholar 

  17. Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol 73(6):1259–1266

    CAS  PubMed  Google Scholar 

  18. White RL, Ryan RA (2015) Long-term cultivation of algae in open-raceway ponds: lessons from the field. Ind Biotechnol 11(4):213–220

    Google Scholar 

  19. Hall DO, Acien Fernandez FG, Guerrero EC, Rao KK, Grima EM (2003) Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82(1):62–73

    CAS  PubMed  Google Scholar 

  20. Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20:280–285. https://doi.org/10.1016/j.copbio.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  21. Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  22. Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301. https://doi.org/10.1007/s00253-010-2697-x

    Article  CAS  PubMed  Google Scholar 

  23. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177. https://doi.org/10.1002/elsc.200900003

    Article  CAS  Google Scholar 

  24. Richmond A (2004) Biological principles of mass cultivation. In: Handbook of microalgal culture. Blackwell, Oxford, pp 125–177. https://doi.org/10.1002/9780470995280.ch8

    Chapter  Google Scholar 

  25. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501. https://doi.org/10.1128/EC.00364-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zijffers J-WF, Salim S, Janssen M, Tramper J, Wijffels RH (2008) Capturing sunlight into a photobioreactor: ray tracing simulations of the propagation of light from capture to distribution into the reactor. Chem Eng J 145:316–327. https://doi.org/10.1016/j.cej.2008.08.011

    Article  CAS  Google Scholar 

  27. Richardson JW, Johnson MD, Zhang X, Zemke P, Chen W (2014) A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability. Algal Res 4:96–104. https://doi.org/10.1016/j.algal.2013.12.003

    Article  Google Scholar 

  28. Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 91(1):31–46

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cerón García MC, Camacho FG, Mirón AS, Sevilla JF, Chisti Y, Grima EM (2006) Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol 16(5):689

    Google Scholar 

  30. Choi WY, Oh SH, Seo YC, Kim GB, Kang DH, Lee SY, Lee HY (2011) Effects of methanol on cell growth and lipid production from mixotrophic cultivation of Chlorella sp. Biotechnol Bioprocess Eng 16(5):946–955

    CAS  Google Scholar 

  31. Morales-Sanchez D, Martinez-Rodriguez O, Kyndt J, Martinez A (2014) Heterotrophic growth of microalgae: metabolic aspects. World J Microbiol Biotechnol 31:1–9. https://doi.org/10.1007/s11274-014-1773-2

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771. https://doi.org/10.1002/bit.21489

    Article  CAS  PubMed  Google Scholar 

  33. Espinosa-gonzalez I, Parashar A, Bressler DC (2014) Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour Technol 155:170–176. https://doi.org/10.1016/j.biortech.2013.12.028

    Article  CAS  PubMed  Google Scholar 

  34. Pleissner D, Lam WC, Sun Z, Lin CSK (2013) Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour Technol 137:139–146. https://doi.org/10.1016/j.biortech.2013.03.088

    Article  CAS  PubMed  Google Scholar 

  35. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    CAS  PubMed  Google Scholar 

  36. Eroglu E, Smith SM, Raston CL (2015) Biomass and biofuels from microalgae, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-16640-7

    Book  Google Scholar 

  37. Berninger UG, Caron DA, Sanders RW (1992) Mixotrophic algae in 3 ice-covered lakes of the Pocono mountains USA. Freshw Biol 28(2):263–272

    Google Scholar 

  38. Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846

    CAS  PubMed  Google Scholar 

  39. Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110(1):510–516

    CAS  PubMed  Google Scholar 

  40. Zhou W, Chen P, Min M, Ma X, Wang J, Griffith R, Hussain F, Peng P, Xie Q, Li Y, Shi J, Meng J, Ruan R (2014) Environment-enhancing algal biofuel production using wastewaters. Renew Sust Energ Rev 36:256–269. https://doi.org/10.1016/j.rser.2014.04.073

    Article  Google Scholar 

  41. Mobin S, Alam F (2014) Biofuel production from algae utilizing wastewater. In: 19th Australasian fluid mechanics conference, Article no. 27

    Google Scholar 

  42. Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38

    Google Scholar 

  43. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    CAS  PubMed  Google Scholar 

  44. Kumar H, Yadava P, Gaur J (1981) Electrical flocculation of the unicellular green alga Chlorella vulgaris Beijerinck. Aquat Bot 11:187–195

    CAS  Google Scholar 

  45. Pahl SL, Lee AK, Kalaitzidis T, Ashman PJ, Sathe S, Lewis DM (2013) Harvesting, thickening and dewatering microalgae biomass. In: Michael AB, Navid RM (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 165–185

    Google Scholar 

  46. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:12–30

    Google Scholar 

  47. Liu J, Zhu Y, Tao Y, Zhang Y, Li A, Li T, Sang M, Zhang C (2013) Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol Biofuels 6:98–105

    PubMed  PubMed Central  Google Scholar 

  48. Smith BT, Davis RH (2012) Sedimentation of algae flocculated using naturally-available, magnesium-based flocculants. Algal Res 1:32–39

    CAS  Google Scholar 

  49. Vandamme D, Muylaert K, Fraeye I, Foubert I (2014) Floc characteristics of Chlorella vulgaris: influence of flocculation mode and presence of organic matter. Bioresour Technol 151:383–387

    CAS  Google Scholar 

  50. Dassey AJ, Theegala CS (2013) Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour Technol 128:241–245

    CAS  PubMed  Google Scholar 

  51. Al Hattab M, Ghaly A, Hammoud A (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5:100–154

    Google Scholar 

  52. Barros AI, Goncalves AL, Simoes M, Pires JCM (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev 41:1489–1500

    Google Scholar 

  53. Mo W, Soh L, Werber JR, Elimelech M, Zimmerman JB (2015) Application of membrane dewatering for algal biofuel. Algal Res 11:1–12

    Google Scholar 

  54. Molina Grima E, Belarbi EH, Fernandez FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    CAS  PubMed  Google Scholar 

  55. Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol 24:329–337

    CAS  Google Scholar 

  56. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    CAS  Google Scholar 

  57. Concas A, Pisua M, Caoa G (2015) Micro algal cell disruption through Fenton reaction: experiments, modeling and remarks on its effect on the extracted lipids composition. Chem Eng Trans 43:367–372

    Google Scholar 

  58. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. Biol Chem 226:497–509

    CAS  Google Scholar 

  59. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Biochem Physiol 8:911–917

    Google Scholar 

  60. Ramluckana K, Moodleya GK, Bux F (2014) An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel 116:103–108

    Google Scholar 

  61. Boutekedjiret C, Vian MA, Chemat F (2014) Terpenes as green solvents for natural products extraction. Alternative solvents for natural products extraction green chemistry and sustainable. In: Green chemistry and sustainable technology. Springer, Berlin, pp 205–219

    Google Scholar 

  62. Carrapiso AI, Garcıa C (2000) Development in lipid analysis: some new extraction techniques and in situ transesterification. Lipids 11:1167–1177

    Google Scholar 

  63. Heaton EA, Flavell RB, Mascia PN, Thomas SR, Dohleman FG, Long SP (2008) Herbaceous energy crop development: recent progress and future prospects. Curr Opin Biotechnol 19:202–209

    CAS  PubMed  Google Scholar 

  64. Kumar A, Singh JS (2017) Microalgae and cyanobacteria biofuels: a sustainable alternate to crop-based fuels. In: Singh JS, Singh DP (eds) Microbes and environmental management. Studium Press, New Delhi, pp 1–20

    Google Scholar 

  65. Kumar A, Kaushal S, Saraf SA, Singh JS (2018) Microbial bio-fuels: a solution to carbon emissions and energy crisis. Front Biosciences (Landmark) 23:1789–1802

    CAS  Google Scholar 

  66. Barry AN, Starkenburg SR, Sayre RT (2015) Strategies for optimizing algal biology for enhanced biomass production. Front Energy Res 3:1–9

    Google Scholar 

  67. Lyon SR, Ahmadzadeh H, Murry MA (2015) Biomass and biofuels from microalgae, vol 2. Springer, Berlin, pp 95–115. https://doi.org/10.1007/978-3-319-16640-7_695

    Book  Google Scholar 

  68. Muylaert K, Beuckels A, Depraetere O (2015) Biomass and biofuels from microalgae, vol 2. Springer, Cham, pp 75–94. https://doi.org/10.1007/978-3-319-16640-7

    Book  Google Scholar 

  69. An JY, Sim SJ, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15:185–191

    CAS  Google Scholar 

  70. Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424. https://doi.org/10.1016/j.apenergy.2010.11.025

    Article  CAS  Google Scholar 

  71. Mehrabadi A, Craggs R, Farid MM (2014) Wastewater treatment high rate algal ponds (WWT HRAP) for low cost biofuel production. Bioresour Technol 184:202–214

    PubMed  Google Scholar 

  72. Park JBK, Craggs RJ, Shilton AN (2013) Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling. Water Res 47(13):4422–4432

    CAS  PubMed  Google Scholar 

  73. Ravishankar GA, Sarada R, Vidyashankar S, VenuGopal KS, Kumudha A (2012) Cultivation of micro-algae for lipids and hydrocarbons, and utilization of spent biomass for livestock feed and for bio-active constituents. In: Makkar HPS (ed) Biofuel co-products as livestock feed – opportunities and challenges. Food and Agriculture Organization, Rome, pp 423–446. ISBN: 978-92-5-107299-8

    Google Scholar 

  74. Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714

    CAS  Google Scholar 

  75. Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219

    CAS  PubMed  Google Scholar 

  76. Sarat Chandra T, Suvidha G, Mukherji S, Chauhan VS, Vidyashankar S, Krishnamurthi K, Sarada R, Mudliar SN (2014) Statistical optimization of thermal pretreatment conditions for enhanced biomethane production from defatted algal biomass. Bioresour Technol 162:157–165

    CAS  PubMed  Google Scholar 

  77. López Barreiro D, Prins W, Ronsse F, Brilman W (2013) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53:113–127

    Google Scholar 

  78. Porphy SJ, Farid MM (2012) Feasibility study for production of biofuel and chemicals from marine microalgae Nannochloropsis sp. based on basic mass and energy analysis. ISRN Renew Energy 2012:11–17. https://doi.org/10.5402/2012/156824

    Article  CAS  Google Scholar 

  79. Babich IV, Van der Hulst M, Lefferts L, Moulijn JA, O’Connor P, Seshan K (2011) Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy 35(7):3199–3207

    CAS  Google Scholar 

  80. Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50(7):1834–1840

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babuskin Srinivasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srinivasan, B., Kulshreshtha, G. (2020). Algal Biomass for Biofuels and Bioproducts. In: Jerold, M., Arockiasamy, S., Sivasubramanian, V. (eds) Bioprocess Engineering for Bioremediation. The Handbook of Environmental Chemistry, vol 104. Springer, Cham. https://doi.org/10.1007/698_2020_580

Download citation

Publish with us

Policies and ethics