Skip to main content
Log in

Emerging industrial applications of microalgae: challenges and future perspectives

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Microalgae are unicellular photosynthetic organisms that have been recently attracted potential interests and have applications in food, nutraceuticals, pharmaceuticals, animal feed, cosmetics, and biofertilizers industry. Microalgae are rich in a variety of high-value bioactive compounds which have potential benefits on human health and can be used for the prevention and curing of many disease conditions. But scale-up and safety issues remain a major challenge in the commercialization of microalgal products in a cost-effective manner. However, techniques have been developed to overcome these challenges and successfully selling the products derived from microalgae as food, cosmetics and pharmaceutical industries. Microalgae are rich in many nutrients and can be used for the production of functional food and nutraceuticals, safety and regulatory issues are major concerns and extensive research is still needed to make microalgae a commercial success in the future. Many practical difficulties are involved in making the microalgal food industry commercially viable. The present review focuses on the industrial applications of microalgae and the challenges faced during commercial production.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Khatoon N, Pal R. Microalgae in biotechnological application: a commercial approach. Plant Biol Biotechnol Vol II Plant Genomics Biotechnol. 2015. https://doi.org/10.1007/978-81-322-2283-5_2.

    Article  Google Scholar 

  2. Udayan A, Arumugam M, Pandey A. Nutraceuticals from algae and cyanobacteria. Algal Green Chem Recent Prog Biotechnol. 2017. https://doi.org/10.1016/B978-0-444-63784-0.00004-7.

    Article  Google Scholar 

  3. Gouveia L, Raymundo A, Batista AP, Sousa I, Empis J. Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. Eur Food Res Technol. 2006;222:362–7. https://doi.org/10.1007/s00217-005-0105-z.

    Article  CAS  Google Scholar 

  4. Lum KK, Kim J, Lei XG. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J Anim Sci Biotechnol. 2013;4:1–7. https://doi.org/10.1186/2049-1891-4-53.

    Article  CAS  Google Scholar 

  5. Wang HMD, Chen CC, Huynh P, Chang JS. Exploring the potential of using algae in cosmetics. Bioresour Technol. 2015;184:355–62. https://doi.org/10.1016/j.biortech.2014.12.001.

    Article  CAS  PubMed  Google Scholar 

  6. Uysal O, Uysal FO, Ekinci K. Determination of fertilizing characteristics of three different microalgae cultivated in raceways in greenhouse conditions. Agron Ser Sci Res. 2016;59:15–9.

    Google Scholar 

  7. Rashid N, Park WK, Selvaratnam T. Binary culture of microalgae as an integrated approach for enhanced biomass and metabolites productivity, wastewater treatment, and bioflocculation. Chemosphere. 2018;194:67–75. https://doi.org/10.1016/j.chemosphere.2017.11.108.

    Article  CAS  PubMed  Google Scholar 

  8. Gellenbeck KW. Utilization of algal materials for nutraceutical and cosmeceutical applications-what do manufacturers need to know? J Appl Phycol. 2012;24:309–13. https://doi.org/10.1007/s10811-011-9722-z.

    Article  Google Scholar 

  9. Rajesh BJ, Preethi S, Kavitha GM, Kumar G. Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour Technol. 2020;302:122822. https://doi.org/10.1016/j.biortech.2020.122822.

    Article  CAS  Google Scholar 

  10. Haimeur A, Ulmann L, Mimouni V, Guéno F, Pineau-Vincent F, Meskini N, Tremblin G. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats. Lipids Health Dis. 2012. https://doi.org/10.1186/1476-511X-11-147.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Udayan A, Kathiresan S, Arumugam M. Kinetin and Gibberellic acid (GA3) act synergistically to produce high value polyunsaturated fatty acids in Nannochloropsis oceanica CASA CC201. Algal Res. 2018;32:182–92. https://doi.org/10.1016/j.algal.2018.03.007.

    Article  Google Scholar 

  12. Udayan A, Sabapathy H, Arumugam M. Stress hormones mediated lipid accumulation and modulation of specific fatty acids in Nannochloropsis oceanica CASA CC201. Bioresour Technol. 2020;310:123437. https://doi.org/10.1016/j.biortech.2020.123437.

    Article  CAS  PubMed  Google Scholar 

  13. Lordan S, Ross RP, Stanton C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar Drugs. 2011;9:1056–100. https://doi.org/10.3390/md9061056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Riediger ND, Othman RA, Suh M, Moghadasian MH. A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc. 2009;109:668–79. https://doi.org/10.1016/j.jada.2008.12.022.

    Article  CAS  PubMed  Google Scholar 

  15. Garcia JL, de Vicente M, Galan B. Microalgae, old sustainable food, and fashion nutraceuticals. Microb Biotechnol. 2017;10:1017–24. https://doi.org/10.1111/1751-7915.12800.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes, and fermenters. J Biotechnol. 1999;35:313–21. https://doi.org/10.1016/S0168-1656(99)00083-8.

    Article  Google Scholar 

  17. A4F - Algae 4 Future.2021. https://a4f.pt/en. Accessed 7 Feb 2021.

  18. Parry Nutraceuticals.2021. https://www.parrynutraceuticals.com/. Accessed 7 Feb 2021.

  19. Taiwan Chlorella Manufacturing Company.2021. http://www.taiwanchlorella.com/. Accessed 7 Feb 2021.

  20. Phytobloom by Necton.2021. http://www.phytobloom.com/. Accessed 7 Feb 2021.

  21. DIC Lifetech Co., Ltd.2021. https://www.dlt-spl.co.jp/spirulina/. Accessed 7 Feb 2021.

  22. WonderLabs, Vitamins.2021. https://www.wonderlabs.com/itemleft.php?itemnum=6811. Accessed 7 Feb 2021.

  23. Shamriz S, Ofoghi H. Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production. Biotechnol Genet Eng Rev. 2017;32:92–106. https://doi.org/10.1080/02648725.2017.1307673.

    Article  CAS  Google Scholar 

  24. BASF – United States.2021. https://www.basf.com/us/en.html. Accessed 7 Feb 2021.

  25. Chlostanin Nikken Nature Co. Limited.2021. http://www.nikken-miho.com/index_topic.php?did=9&didpath=/9. Accessed 7 Feb 2021.

  26. Solazyme.2021. http://solazymeindustrials.com/. Accessed 7 Feb 2021.

  27. AstaPure Natural Astaxanthin by Algatech.2021. https://www.algatech.com/algatech-product/astapure-natural-astaxanthin/. Accessed 7 Feb 2021.

  28. BlueBioTech.2021. https://www.bluebiotech.de/com/produkte.htm. Accessed 7 Feb 2021.

  29. AstaReal USA.2021. https://astarealusa.com/products. Accessed 7 Feb 2021.

  30. Udayan A, Arumugam M, Pandey A. Nutraceuticals from algae and cyanobacteria. In: Algal Green Chemistry. Amsterdam: Elsevier; 2017. p. 65–89.

    Chapter  Google Scholar 

  31. Nilesh Hemantkumar J, Ilza Rahimbhai M. Microalgae and its use in nutraceuticals and food supplements. In: microalgae - from Physiology to Application.2020. https://doi.org/10.5772/intechopen.90143

  32. Wolkers H, Barbosa M, Kleinegris D, Bosma R, Wijffels R. Microalgae: the green gold of the future. Green Raw Mater. 2011.

  33. Becker EW. Micro-algae as a source of protein. Biotechnol Adv. 2007;25:207–10. https://doi.org/10.1016/j.biotechadv.2006.11.002.

    Article  CAS  PubMed  Google Scholar 

  34. Phillips GO, Williams PA. Handbook of food. Proteins. 2011. https://doi.org/10.1533/9780857093639.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell HE, Smith AG, Camire ME, Brawley SH. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol. 2017;29:949–82. https://doi.org/10.1007/s10811-016-0974-5.

    Article  CAS  PubMed  Google Scholar 

  36. Feng X, Chen Y, Lv J, Han S, Tu R, Zhou X, Jin W, Ren N. Enhanced lipid production by Chlorella pyrenoidosa through magnetic field pretreatment of wastewater and treatment of microalgae-wastewater culture solution: Magnetic field treatment modes and conditions. Bioresour Technol. 2020;306:123102. https://doi.org/10.1016/j.biortech.2020.123102.

    Article  CAS  PubMed  Google Scholar 

  37. Moreno FJ, Corzo N, Montilla A, Villamiel M, Olano A. Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides. Curr Opin Food Sci. 2017;13:50–5. https://doi.org/10.1016/j.cofs.2017.02.009.

    Article  Google Scholar 

  38. Enzing C, Ploeg M, Barbosa M, Sijtsma L. Microalgae-based products for the food and feed sector: an outlook for Europe. 2014.

  39. Beheshtipour H, Mortazavian AM, Mohammadi R, Sohrabvandi S, Khosravi-Darani K. Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Compr Rev Food Sci Food Saf. 2013;12:144–54. https://doi.org/10.1111/1541-4337.12004.

    Article  CAS  Google Scholar 

  40. Varga L, Szigeti J, Kovács R, Foldes T, Buti S. Influence of a Spirulina platensis biomass on the microflora of fermented ABT milks during storage (R1). Int J Dairy Sci. 2002;85:1031–8. https://doi.org/10.3168/jds.S0022-0302(02)74163-5.

    Article  CAS  Google Scholar 

  41. Molnar N, Gyenis B, Varga L. Influence of a powdered Spirulina platensis biomass on acid production of lactococci in milk. Milchwissenschaft. 2005;60:380–2.

    CAS  Google Scholar 

  42. Figueira FS, Crizel TM, Salas-Mellado MM. Elaboration of gluten-free bread enriched with the microalgae Spirulina platensis. Braz J Food Technol. 2011;14:308–16.

    Article  CAS  Google Scholar 

  43. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006. https://doi.org/10.1263/jbb.101.87.

    Article  PubMed  Google Scholar 

  44. Khan Z, Bhadouria P, Bisen P. Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol. 2005;6:372–9. https://doi.org/10.2174/138920105774370607.

    Article  Google Scholar 

  45. Abd El Baky HH, Baroty GS, Ibrahem EA. Functional characters evaluation of biscuits sublimated with pure phycocyanin isolated from Spirulina and Spirulina biomass. Nutr Hosp. 2015;32:231–41. https://doi.org/10.3305/nh.2015.32.1.8804.

    Article  CAS  PubMed  Google Scholar 

  46. Batista AP, Niccolai A, Fradinho P, Fragoso S, Bursic I, Rodolfi L, Biondi N, Tredici MR, Sousa I, Raymundo A. Microalgae biomass as an alternative ingredient in cookies: sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res. 2017;26:161–71. https://doi.org/10.1016/j.algal.2017.07.017.

    Article  Google Scholar 

  47. Gouveia L, Coutinho C, Mendonça E, Mendonça M, Batista AP, Sousa I, Bandarra NM, Raymundo A. Functional biscuits with PUFA-ω3 from Isochrysis galbana. J Sci Food Agric. 2008;88:891–6. https://doi.org/10.1002/jsfa.3166.

    Article  CAS  Google Scholar 

  48. Hossain AKMM, Brennan MA, Mason SL, Guo X, Zeng XA, Brennan CS. The effect of astaxanthin-rich microalgae “Haematococcus pluvialis” and Wholemeal flours incorporation in improving the physical and functional properties of cookies. 2017. Foods. https://doi.org/10.3390/foods6080057.

  49. Gouveia L, Batista AP, Miranda A, Empis J, Raymundo A. Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innov Food Sci and Emerg Technol. 2007;8:433–6. https://doi.org/10.1016/j.ifset.2007.03.026.

    Article  CAS  Google Scholar 

  50. Hafsa YA, Amel D, Samia S, Sidahmed S. Evaluation of nutritional and sensory properties of bread enriched with Spirulina. Annals Food Sci Technol. 2014;15:270–5.

    CAS  Google Scholar 

  51. Ak B, Avsaroglu E, Isik O, Ozyurt G, Kafkas E, Etyemez M. Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis. Int J Eng Res Appl.2016;6. https://www.academia.edu/download/51073247/E612043038.pdf

  52. Garcia-Segovia P, Pagan-Moreno MJ, Lara IF, Martinez-Monzo J. Effect of microalgae incorporation on physicochemical and textural properties in wheat bread formulation. Food Sci Technol Int. 2017;23:437–47. https://doi.org/10.1177/1082013217700259.

    Article  CAS  PubMed  Google Scholar 

  53. Jeon JK. Effect of Chlorella addition on the quality of processed cheese, J. Korean Soc. Food Sci. Nutri. 2006;35373–377. https://www.koreascience.or.kr/article/JAKO200617033605689

  54. Cho EJ, Nam ES, Park SI. Keeping quality and sensory properties of drinkable yoghurt with added Chlorella extract. J Korean Soc Food Sci Nutr. 2004;17:128–32.

    Google Scholar 

  55. Batista AP, Nunes MC, Raymundo A, Gouveia L, Sousa I, Cordobés F, Guerrero A, Franco JM. Microalgae biomass interaction in biopolymer gelled systems. Food Hydrocoll. 2011;25:817–25. https://doi.org/10.1016/j.foodhyd.2010.09.018.

    Article  CAS  Google Scholar 

  56. Blades M, Gouveia L, Batista AP, Raymundo A, Bandarra N. Spirulina maxima and Diacronema vlkianum microalgae in vegetable gelled desserts. Nutr Food Sci. 2008;38:492–501. https://doi.org/10.1108/00346650810907010.

    Article  Google Scholar 

  57. Fradique Ḿ, Batista AP, Nunes MC, Gouveia L, Bandarra NM, Raymundo A. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: preparation and evaluation. J Sci Food Agr. 2010;90:1656–64. https://doi.org/10.1002/jsfa.3999.

    Article  CAS  Google Scholar 

  58. Fradique M, Batista AP, Nunes MC, Gouveia L, Bandarra NM, Raymundo A. Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. LWT Food Sci Technol. 2013;50:312–9. https://doi.org/10.1016/j.lwt.2012.05.006.

    Article  CAS  Google Scholar 

  59. Rodríguez De Marco E, Steffolani ME, Martínez CS, León AE. Effects of Spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT Food Sci Technol. 2014;58:102–8. https://doi.org/10.1016/j.lwt.2014.02.054.

    Article  CAS  Google Scholar 

  60. El-Baz FK, Abdo SM, Hussein AMS. Microalgae Dunaliella salina for use as food supplement to improve pasta quality. Int J Pharm Sci Rev Res. 2017;46:45–51.

    CAS  Google Scholar 

  61. Guzmán S, Gato A, Lamela M, Freire-Garabal M, Calleja JM. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res. 2003;17:665–70. https://doi.org/10.1002/ptr.1227.

    Article  CAS  PubMed  Google Scholar 

  62. Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65:635–48. https://doi.org/10.1007/s00253-004-1647-x.

    Article  CAS  PubMed  Google Scholar 

  63. Running JA, Severson DK, Schneider KJ. Extracellular production of L-ascorbic acid by Chlorella protothecoides, Prototheca species, and mutants of P. moriformis during aerobic culturing at low pH. J Ind Microbiol Biotechnol. 2002;29:93–8. https://doi.org/10.1038/sj.jim.7000275.

    Article  CAS  PubMed  Google Scholar 

  64. Gouveia L, Veloso V, Reis A, Fernandas H, Novais J, Empis J. Chlorella vulgaris used to colour egg yolk. J Sci Food Agric. 1996;70:167–72. https://doi.org/10.1002/(SICI)1097-0010(199602)70:2%3c167::AID-JSFA472%3e3.0.CO;2-2.

    Article  CAS  Google Scholar 

  65. Bruno M, Koschmieder J, Wuest F, Schaub P, Fehling-Kaschek M, Timmer J, Beyer P, Al-Babili S. Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites. J Exp Bot. 2016;7:5993–6005. https://doi.org/10.1093/jxb/erw356.

    Article  CAS  Google Scholar 

  66. Gouveia C, Coutinho E, Mendonça AP, Batista I, Sousa NM, Bandarra A, Raymundo A. Functional biscuits with PUFA-ω3 from Isochrysis galbana. J Sci Food Agric. 2008;88:891–6. https://doi.org/10.1002/jsfa.3166.

    Article  CAS  Google Scholar 

  67. Borowitzka MA. High-value products from microalgae—their development and commercialization. J Appl Phycol. 2013;25:743–56.

    Article  CAS  Google Scholar 

  68. Carbonell-Capella JM, Buniowska M, Barba FJ, Esteve MJ, Frígola A. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review. Compr Rev Food Sci Food Saf. 2014;13:155–71. https://doi.org/10.1111/1541-4337.12049.

    Article  CAS  PubMed  Google Scholar 

  69. Cian RE, Drago SR, Sánchez De Medina F, Martínez-Augustin O. Proteins and carbohydrates from red seaweeds: evidence for beneficial effects on gut function and microbiota. Mar Drugs. 2015;13:5358–83. https://doi.org/10.3390/md13085358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Duffy L, Raiten D, Hubbard V, Starke-Reed P. Progress and challenges in developing metabolic footprints from diet in human gut microbial cometabolism. J. Nutr.2015;145:1123S–1130S. https://academic.oup.com/jn/article-abstract/145/5/1123S/4644374

  71. Hehemann JH, Kelly AG, Pudlo NA, Martens EC, Boraston AB. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. National Acad Sciences. 2012;109:19786–91. https://doi.org/10.1073/pnas.1211002109.

    Article  Google Scholar 

  72. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature.2010;464:908–912. https://www.nature.com/articles/nature08937

  73. Thomas F, Barbeyron T, Tonon T, Génicot S, Czjzek M, Michel G. Characterization of the first alginolytic operons in a marine bacterium: From their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environmen Microbiol. 2012;14:2379–94. https://doi.org/10.1111/j.1462-2920.2012.02751.x.

    Article  CAS  Google Scholar 

  74. Costello E, Stagaman K, Dethlefsen L, Bohannan BJ, Relman. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336:1255–1262. https://science.sciencemag.org/content/336/6086/1255.abstract

  75. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7. https://doi.org/10.1126/science.1223813.

    Article  CAS  PubMed  Google Scholar 

  76. Sensoy I. A review on the relationship between food structure, processing, and bioavailability. Crit Rev Food Sci Nutr. 2014;54:902–9. https://doi.org/10.1080/10408398.2011.619016.

    Article  CAS  PubMed  Google Scholar 

  77. Arsenic, metals, fibres, and dusts. IARC monographs on the evaluation of carcinogenic risks to humans/World Health Organization, International Agency for Research on Cancer. 2012;100: 12.

  78. Zhao FJ, McGrath SP, Meharg AA. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol. 2010;61:535–59. https://doi.org/10.1146/annurev-arplant-042809-112152.

    Article  CAS  PubMed  Google Scholar 

  79. Arsenic Fact Sheet, World Health Organisation.2016. http://www.who.int/mediacentre/factsheets/fs372/en/

  80. Molin M, Ulven SM, Meltzer HM, Alexander J. Arsenic in the human food chain, biotransformation and toxicology—review focusing on seafood arsenic. J Trace Elem Med Biol. 2015;31:249–59. https://doi.org/10.1016/j.jtemb.2015.01.010.

    Article  CAS  PubMed  Google Scholar 

  81. García-Salgado S, Raber G, Raml R, Magnes C, Francesconi KA. Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae. Environ Chem. 2012;9:63–6. https://doi.org/10.1071/EN11164.

    Article  CAS  Google Scholar 

  82. Raml R, Goessler W, Traar P, Ochi T, Francesconi KA. Novel thioarsenic metabolites in human urine after ingestion of an Arsenosugar, 2′,3′-Dihydroxypropyl 5-Deoxy-5-Dimethylarsinoyl-β-D-riboside. Chem Res Toxicol. 2005;18:1444–50. https://doi.org/10.1021/tx050111h.

    Article  CAS  PubMed  Google Scholar 

  83. García-Salgado S, Quijano MA, Bonilla MM. Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry. Anal Chim Acta. 2012;714:38–46. https://doi.org/10.1016/j.aca.2011.12.001.

    Article  CAS  PubMed  Google Scholar 

  84. Magura J, Moodley R, Jonnalagadda SB. Chemical composition of selected seaweeds from the Indian Ocean, KwaZulu-Natal coast, South Africa. J Environ Sci Health Part B. 2016;51:525–33. https://doi.org/10.1080/03601234.2016.1170547.

    Article  CAS  Google Scholar 

  85. Taylor VF, Jackson BP. Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture. Chemosphere. 2016;163:6–13. https://doi.org/10.1016/j.chemosphere.2016.08.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ichikawa S, Kamoshida M, Hanaoka K, Hamano N, Maitani T, Kaise T. Decrease of arsenic in edible brown algae Hijikia fusiforme by the cooking process. Appl Organomet Chem. 2006;20:585–90. https://doi.org/10.1002/aoc.1102.

    Article  CAS  Google Scholar 

  87. Devesa V, Vélez D, Montoro R. Effect of thermal treatments on arsenic species contents in food. Food Chem Toxicol. 2008;46:1–8. https://doi.org/10.1016/j.fct.2007.08.021.

    Article  CAS  PubMed  Google Scholar 

  88. Nakamura Y, Narukawa T, Yoshinaga J. Cancer risk to Japanese population from the consumption of inorganic arsenic in cooked hijiki. J Agric Food Chem. 2008;56:2536–40. https://doi.org/10.1021/jf0731797.

    Article  CAS  PubMed  Google Scholar 

  89. Huang YK, Lin KH, Chen KW, Chang CC, Liu CW, Yang MH, Hsueh YM. Arsenic species contents at aquaculture farm and in farmed mouthbreeder (Oreochromis mossambicus) in blackfoot disease hyperendemic areas. Food Chem Toxicol. 2003;41:1491–500. https://doi.org/10.1016/S0278-6915(03)00165-0.

    Article  CAS  PubMed  Google Scholar 

  90. Wang ZZ, Liu GH, Gong DH, Qiao C, Yao Y, Mu QE. Tracking sources of arsenic in the Spirulina Platensis power from the Ordos Alkali lake in Inner Mongolia. Chin Agric Sci Bull. 2012;28:108–11.

    Google Scholar 

  91. Wang S, Xu PP, Liu C, Wang Y, Zhang CH, Ge Y. Effects of phosphorus at various concentrations on adsorption, uptake and transformation of arsenate by Spirulina platensis. J Agr Environ Sci. 2015;1034–1040.

  92. Boyer EW, Kearney S, Shanon MW, Quang L, Woolf A, Kemper KJ. Poisoning from a dietary supplement administered during hospitalization. Pediatrics. 2002;109:e49–e49. https://doi.org/10.1542/peds.109.3.e49.

    Article  PubMed  Google Scholar 

  93. Kawai T, Zhang ZW, Moon CS, Shimbo S, Watanabe T, Matsuda-Inoguchi N, Higashikawa K, Ikeda M. Comparison of urinary bromide levels among people in East Asia, and the effects of dietary intakes of cereals and marine products. In: Toxicology Letters. Elsevier 2002;285–293. https://doi.org/10.1016/S0378-4274(02)00192-3

  94. Le TM, Knulst AC, Röckmann H. Anaphylaxis to Spirulina confirmed by skin prick test with ingredients of Spirulina tablets. Food Chem Toxicol. 2014;74:309–10. https://doi.org/10.1016/j.fct.2014.10.024.

    Article  CAS  PubMed  Google Scholar 

  95. Szabo NJ, Matulka RA, Chan T. Safety evaluation of Whole Algalin Protein (WAP) from Chlorella protothecoides. Food Chem Toxicol. 2013;59:34–45. https://doi.org/10.1016/j.fct.2013.05.035.

    Article  CAS  PubMed  Google Scholar 

  96. Mouritsen OG, Dawczynski C, Duelund L, Jahreis G, Vetter W, Schröder M. On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr). J Appl Phycol. 2013;25:1777–91. https://doi.org/10.1007/s10811-013-0014-7.

    Article  CAS  Google Scholar 

  97. Jensen GS. Blue-green algae as an immuno-enhancer and biomodulator. Journal of the American Nutraceutical Association.2001;3:24–30. https://ci.nii.ac.jp/naid/10020842775/

  98. Draisci R, Ferretti E, Palleschi L, Marchiafava C. Identification of anatoxins in blue-green algae food supplements using liquid chromatography-tandem mass spectrometry. Food Addit Contam. 2001;18:525–31. https://doi.org/10.1080/02652030118558.

    Article  CAS  PubMed  Google Scholar 

  99. Iwasa M, Yamamoto M, Tanaka Y, Kaito M, Adachi Y. Spirulina-associated hepatotoxicity. Am J Gastroenterol. 2002;97:3212.

    Article  Google Scholar 

  100. Vichi S, Lavorini P, Funari E, Scardala S, Testai E. Contamination by Microcystis and microcystins of blue-green algae food supplements (BGAS) on the Italian market and possible risk for the exposed population. Food Chem Toxicol. 2012;50:4493–9. https://doi.org/10.1016/j.fct.2012.09.029.

    Article  CAS  PubMed  Google Scholar 

  101. Heussner AH, Mazija L, Fastner J, Dietrich DR. Toxin content and cytotoxicity of algal dietary supplements. Toxicol Appl Pharmacol. 2012;265:263–71. https://doi.org/10.1016/j.taap.2012.10.005.

    Article  CAS  PubMed  Google Scholar 

  102. Dietrich DR, Fischer A, Michel C, Hoeger S. Toxin mixture in cyanobacterial blooms—A critical comparison of reality with current procedures employed in human health risk assessment. In: H.K. Hudnell (Ed.), Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Springer New York. 2008:885–912. https://doi.org/10.1007/978-0-387-75865-7_39

  103. Matos AP. The impact of microalgae in food science and technology. J Am Oil Chem Soc. 2017;94:1333–50. https://doi.org/10.1007/s11746-017-3050-7.

    Article  CAS  Google Scholar 

  104. Codd GA, Morrison LF, Metcalf JS. Cyanobacterial toxins: ris k management for health protection. Toxicol Appl Pharm. 2005;23:264–72. https://doi.org/10.1016/j.taap.2004.02.016.

    Article  CAS  Google Scholar 

  105. Esterhuizen M, Pflugmacher S. Microcystins as environmental and human health hazards, in: Handbook of Algal Science. Technology and Medicine, Academic Press. 2020;591–604.

  106. Chen Y, Shen D, Fang D. Nodularins in poisoning. Clin Chim Acta. 2013;425:18–29. https://doi.org/10.1016/j.cca.2013.07.005.

    Article  CAS  PubMed  Google Scholar 

  107. Cyanobacterial toxins: saxitoxins Background document for development of WHO. 2020. https://apps.who.int/iris/bitstream/handle/10665/338069/WHO-HEP-ECH-WSH-2020.8-eng.pdf?sequence=1&isAllowed=y. Accessed 6 Feb 2021.

  108. Rogers RE, Hunter ES, Moser VC, Phillips PM, Herkovits J, Muñoz L, Hall LL, Chernoff N. Potential developmental toxicity of anatoxin-a, a cyanobacterial toxin. Appl Toxicol. 2005;25:527–34. https://doi.org/10.1002/jat.1091.

    Article  CAS  Google Scholar 

  109. Adamski M, Szafer W, Chrapusta-Srebrny E, Kaminski A, Chrapusta E, Bober B, Kamiński A, Białczyk J. Cylindrospermopsin cyanobacterial secondary metabolite. Biological aspects and potential risk for human health and life. Oceanol Hydrobiol St. 2014;43:1897–3191. https://doi.org/10.2478/s13545-014-0148-5.

    Article  Google Scholar 

  110. Stewart I, Schluter PJ, Shaw GR. Cyanobacterial lipopolysaccharides and human health—a review. Environ Health. 2006;5:1–23. https://doi.org/10.1186/1476-069X-5-7.

    Article  CAS  Google Scholar 

  111. Brooke-Jones M, Galikova M, Dircksen H. Cyanobacterial neurotoxin beta-methyl-amino-l-alanine affects dopaminergic neurons in optic ganglia and brain of Daphnia magna. Toxins. 2018; 10:527. https://www.mdpi.com/2072-6651/10/12/527

  112. Daniels O, Fabbro L, Makiela S. The effects of the toxic cyanobacterium Limnothrix (strain AC0243) on Bufo marinus larvae, Toxins.2014;6:1021–1035. https://www.mdpi.com/2072-6651/6/3/1021

  113. Kumar J, Singh D, Tyagi MB, Kumar A. Cyanobacteria: Applications in Biotechnology, in: Cyanobacteria: From Basic Science to Applications. Elsevier.2018:327–346. https://doi.org/10.1016/B978-0-12-814667-5.00016-7

  114. Osborne NJT, Webb PM, Shaw GR. The toxins of Lyngbya majuscula and their human and ecological health effects. Enviro Int. 2001;27:381–92. https://doi.org/10.1016/S0160-4120(01)00098-8.

    Article  CAS  Google Scholar 

  115. Stolz P, Obermayer B. Manufacturing microalgae for skin care. Cosmetics and Toiletries. 2005;120:99–106.

    Google Scholar 

  116. Kim JK, Kottuparambil S, Moh SH, Lee TK, KimYJ RJS, Choi EM, Kim BH, Yu YJ, Yarish C, Han T. Potential applications of nuisance microalgae blooms. J Appl Phycol. 2015. https://doi.org/10.1007/s10811-014-0410-7.

    Article  Google Scholar 

  117. Ryu BM, Himaya SWA, Kim SK. Applications of microalgae-derived active ingredients as cosmeceuticals. In: Handbook of Marine Microalgae. Biotechnol. Adv.2015. https://doi.org/10.1016/B978-0-12-800776-1.00020-0

  118. Kaye Y, Grundman O, Leu S, Zarka A, Zorin B, Didi-Cohen S, Khozin-Goldberg I, Boussiba S. Metabolic engineering toward enhanced LC-PUFA biosynthesis in Nannochloropsis oceanica: overexpression of endogenous δ12 desaturase driven by stress-inducible promoter leads to enhanced deposition of polyunsaturated fatty acids in TAG. Algal Res. 2015;11:387–98. https://doi.org/10.1016/j.algal.2015.05.003.

    Article  Google Scholar 

  119. Gong M, Bassi A. Carotenoids from microalgae: A review of recent developments. Biotechnol Adv. 2016;34:1396–412. https://doi.org/10.1016/j.biotechadv.2016.10.005.

    Article  CAS  PubMed  Google Scholar 

  120. Chakdar H, Hasan M, Pabbi S, Nevalainen H, Shukla P. High-throughput proteomics and metabolomic studies guide re-engineering of metabolic pathways in eukaryotic microalgae: a review. Bioresour. Technol. 2020;124495.

  121. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol. 2008;19:430–6. https://doi.org/10.1016/j.copbio.2008.07.008.

    Article  CAS  PubMed  Google Scholar 

  122. Hempel F, Lau J, Klingl A, Maier UG. Algae as protein factories: Expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum. PLoS ONE. 2011;6:e28424. https://doi.org/10.1371/journal.pone.0028424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Vanier G, Stelter S, Vanier J, Hempel F, Maier UG, Lerouge P, Ma J, Bardor M. Alga-made anti-hepatitis b antibody binds to Human Fcγ Receptors. Biotechnol J. 2018;13:1700496. https://doi.org/10.1002/biot.201700496.

    Article  CAS  Google Scholar 

  124. Hempel F, Maurer M, Brockmann B, Mayer C, Biedenkopf N, Kelterbaum A, Becker S, Maier UG. From hybridomas to a robust microalgal-based production platform: molecular design of a diatom secreting monoclonal antibodies directed against the Marburg virus nucleoprotein. Microb Cell Fact. 2017;16:1–10. https://doi.org/10.1186/s12934-017-0745-2.

    Article  CAS  Google Scholar 

  125. Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA. 2003. https://doi.org/10.1073/pnas.0237108100.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP. Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng. 2009;104:663–73. https://doi.org/10.1002/bit.22446.

    Article  CAS  PubMed  Google Scholar 

  127. Yusibov V, Kushnir N, Streatfield SJ. Antibody production in plants and green algae. Annu Rev Plant Biol. 2016;67:669–701. https://doi.org/10.1146/annurev-arplant-043015-111812.

    Article  CAS  PubMed  Google Scholar 

  128. Shen GL, Li JL, Ghetie MA, Ghetie V, May RD, Till M, Brown AN, Relf M, Knowles P, Uhr JW, Janossy G, Amlot P, Vitetta ES, Thorpe PE. Evaluation of four CD22 antibodies as ricin a chain-containing immunotoxins for the in vivo therapy of human B-cell leukemias and lymphomas. Int J Cancer. 1988;42:792–7. https://doi.org/10.1002/ijc.2910420527.

    Article  CAS  PubMed  Google Scholar 

  129. Bogner C, Dechow T, Ringshausen I, Wagner M, Oelsner M, Lutzny G, Licht T, Peschel C, Pastan I, Kreitman RJ, Decker T. Immunotoxin BL22 induces apoptosis in mantle cell lymphoma (MCL) cells dependent on Bcl-2 expression. Br J Haematol. 2010;48:99–109. https://doi.org/10.1111/j.1365-2141.2009.07939.x.

    Article  CAS  Google Scholar 

  130. Kondo T, FitzGerald D, Chaudhary VK, Adhya S, Pastan I. Activity of immunotoxins constructed with modified Pseudomonas exotoxin A lacking the cell recognition domain. J Biol Chem. 1988;263:9470–5.

    Article  CAS  Google Scholar 

  131. Tran M, Van C, Barrera DJ, Pettersson PL, Peinado CD, Bui J, Mayfield SP. Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci USA. 2013. https://doi.org/10.1073/pnas.1214638110.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M. Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta. 2009;229:873–83. https://doi.org/10.1007/s00425-008-0879-x.

    Article  CAS  PubMed  Google Scholar 

  133. Wannathong T, Waterhouse JC, Young REB, Economou CK, Purton S. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol. 2016;100:5467–77. https://doi.org/10.1007/s00253-016-7354-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Borovsky D, Sterner A, Powell CA. Cloning and expressing trypsin modulating oostatic factor in Chlorella desiccata to control mosquito larvae. Arch Insect Biochem Physiol. 2016;91:17–36. https://doi.org/10.1002/arch.21306.

    Article  CAS  PubMed  Google Scholar 

  135. Barahimipour R, Neupert J. Bock R Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. Plant Mol Biol. 2016;90:403–18. https://doi.org/10.1007/s11103-015-0425-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Reddy PH, Johnson AMA, Kumar JK, Naveen T, Devi MC. Heterologous expression of Infectious bursal disease virus VP2 gene in Chlorella pyrenoidosa as a model system for molecular farming. Plant Cell Tiss Org. 2017;131:119–26. https://doi.org/10.1007/s11240-017-1268-6.

    Article  CAS  Google Scholar 

  137. Murray M, Dordevic AL, Bonham MP, Ryan L. Do marine algal polyphenols have antidiabetic, antihyperlipidemic or anti-inflammatory effects in humans? A systematic review. Crit Rev Food Sci Nutr. 2018;58:2039–54. https://doi.org/10.1080/10408398.2017.1301876.

    Article  CAS  PubMed  Google Scholar 

  138. Farhat G, Drummond S, Al-Dujaili EAS. Polyphenols and their role in obesity management: a systematic review of randomized clinical trials. Phytother Res. 2017;31:1005–18. https://doi.org/10.1002/ptr.5830.

    Article  CAS  PubMed  Google Scholar 

  139. Shanura Fernando IP, Kim M, Son KT, Jeong Y, Jeon YJ. Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach. J Med Food. 2016;19:615–28. https://doi.org/10.1089/jmf.2016.3706.

    Article  Google Scholar 

  140. Luo J, Jiang B, Li C, Jia X, Shi D. CYC27 Synthetic derivative of bromophenol from red alga Rhodomela confervoides: Anti-diabetic effects of sensitizing insulin signaling pathways and modulating RNA splicing-associated RBPs. Mar Drugs. 2019;17:49. https://doi.org/10.3390/md17010049.

    Article  CAS  PubMed Central  Google Scholar 

  141. Shi D, Guo S, Jiang B, Guo C, Wang T, Zhang L, Li J. HPN, a synthetic analogue of bromophenol from red alga Rhodomela confervoides: Synthesis and anti-diabetic effects in C57BL/KsJ-db/db mice. Mar Drugs. 2013;11:350–62. https://doi.org/10.3390/md11020350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Brownlee IA, Allen A, Pearson JP, Dettmar PW, Havler ME, Atherton MR, Onsøyen E. Alginate as a source of dietary fiber. Crit Rev Food Sci Nutr. 2005;45:497–510. https://doi.org/10.1080/10408390500285673.

    Article  CAS  PubMed  Google Scholar 

  143. Lange KW, Hauser J, Nakamura Y, Kanaya S. Dietary seaweeds and obesity. Food Sci Hum Well. 2015;4:87–96. https://doi.org/10.1016/j.fshw.2015.08.001.

    Article  Google Scholar 

  144. Mukhamejanov E, Kon G, Erjanova S, Kirgizbaeva A, Muhamadieva E. Fucoidan—New principle prevention and treatment of diabetes. J Pharm Pharmacol. 2019;7:316–22.

    Google Scholar 

  145. Fernando IPS, Lee WW, Han EJ, Ahn G. Alginate-based nanomaterials: fabrication techniques, properties, and applications. Chem Eng J. 2020. https://doi.org/10.1016/j.cej.2019.123823.

    Article  Google Scholar 

  146. Grasa-López A, Miliar-García A, Quevedo-Corona L, Paniagua-Castro N, Escalona-Cardoso G, Reyes-Maldonado E, Jaramillo-Flores ME. Undaria pinnatifida and fucoxanthin ameliorate lipogenesis and markers of both inflammation and cardiovascular dysfunction in an animal model of diet-induced obesity. Mar Drugs. 2016;14:148. https://doi.org/10.3390/md14080148.

    Article  CAS  PubMed Central  Google Scholar 

  147. Vessby B, Uusitupa M, Hermansen K, Riccardi G, Rivellese AA, Tapsell LC, Nälsén C, Berglund L, Louheranta A, Rasmussen BM, Calvert GD, Maffetone A, Pedersen E, Gustafsson IB, Storlien LH. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU study. Diabetologia. 2001;44:312–9. https://doi.org/10.1007/s001250051620.

    Article  CAS  PubMed  Google Scholar 

  148. Lakshmanasenthil S, Vinoth Kumar T, Geetharamani S, Shanthi PS. α-Amylase and α-Glucosidase InhibitoryActivity of Tetradecanoic Acid (TDA) from Sargassum wightii with Relevance to Type 2 Diabetes Mellitus. JBAPN. 2018;8:180–91. https://doi.org/10.1080/22311866.2018.1474803.

    Article  CAS  Google Scholar 

  149. Kang MC, Ding Y, Kim EA, Choi YK, De Araujo T, Heo SJ, Lee SH. Indole derivatives isolated from brown alga Sargassum thunbergii inhibit adipogenesis through AMPK activation in 3T3-L1 preadipocytes. Mar Drugs. 2017;15:119. https://doi.org/10.3390/md15040119.

    Article  CAS  PubMed Central  Google Scholar 

  150. Alvarez-Kalverkamp M, Bayer W, Becheva S, Benning R, Börnecke S, Chemnitz C, Hansen-kuhn K, Holden P, Hudson U, Jensen A, Mathias E, Moldenhauer H, Petrini C, Reichert T, Sebastian M, Sharma S. Meat atlas, Facts and figures about the animals we eat, 2014.

  151. Leahy E, Lyons S, Tol RSJ. An estimate of the number of vegetarians in the world, ESRI Working Paper 340.2010.

  152. Becker W. 18 Microalgae in human and animal nutrition, in: Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Wiley Online Library. 2004.

  153. Madeira MS, Cardoso C, Lopes PA, Coelho D, Afonso C, Bandarra NM, Prates JAM. Microalgae as feed ingredients for livestock production and meat quality: a review. Livest Sci. 2017;205:111–21. https://doi.org/10.1016/j.livsci.2017.09.020.

    Article  Google Scholar 

  154. Certik M, Shimizu S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng. 1999;87:1–14. https://doi.org/10.1016/S1389-1723(99)80001-2.

    Article  CAS  PubMed  Google Scholar 

  155. Singh J, Gu S. Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev. 2010. https://doi.org/10.1016/j.rser.2010.06.014.

    Article  Google Scholar 

  156. Kulshreshtha A, Jarouliya AJU, Bhadauriya P, Prasad G, Bisen P. Spirulina in health care management. Curr Pharm Biotechnol. 2008;9:400–5. https://doi.org/10.2174/138920108785915111.

    Article  CAS  PubMed  Google Scholar 

  157. Stamey JA, Shepherd DM, de Veth MJ, Corl BA. Use of algae or algal oil rich in n-3 fatty acids as a feed supplement for dairy cattle. Int J Dairy Sci. 2012;95:5269–75. https://doi.org/10.3168/jds.2012-5412.

    Article  CAS  Google Scholar 

  158. Boeckaert C, Vlaeminck B, Dijkstra J, Issa-Zacharia A, Van Nespen T, Van Straalen W, Fievez V. Effect of dietary starch or micro algae supplementation on rumen fermentation and milk fatty acid composition of dairy cows. J Dairy Sci. 2008;91:4714–27. https://doi.org/10.3168/jds.2008-1178.

    Article  CAS  PubMed  Google Scholar 

  159. Lamminen M, Halmemies-Beauchet-Filleau M, Kokkonen T, Simpura I, Jaakkola S, Vanhatalo A. Comparison of microalgae and rapeseed meal as supplementary protein in the grass silage based nutrition of dairy cows. Anim Feed Sci Technol. 2017;234:295–311. https://doi.org/10.1016/j.anifeedsci.2017.10.002.

    Article  CAS  Google Scholar 

  160. Kholif AE, Morsy TA, Matloup OH, Anele UY, Mohamed AG, El-Sayed AB. Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats. J Agric Sci. 2017;155:508. https://doi.org/10.1017/S0021859616000824.

    Article  CAS  Google Scholar 

  161. Póti P, Pajor F, Bodnár A, Penksza K, Köles P. Effect of micro-alga supplementation on goat and cow milk fatty acid composition. Chil J Agricul Res. 2015;75:259–63. https://doi.org/10.4067/S0718-58392015000200017.

    Article  Google Scholar 

  162. Costa DFA, Quigley SP, Isherwood P, McLennan SR, Poppi DP. Supplementation of cattle fed tropical grasses with microalgae increases microbial protein production and average daily gain. J Anim Sci. 2016;94:2047–58. https://doi.org/10.2527/jas.2016-0292.

    Article  CAS  PubMed  Google Scholar 

  163. Holman B. Growth and body conformation responses of genetically divergent Australian sheep to Spirulina (Arthrospira platensis) supplementation. Am J Exp Agric. 2012;2:162–73. https://doi.org/10.9734/ajea/2012/992.

    Article  Google Scholar 

  164. Caroprese M, Albenzio M, Ciliberti MG, Francavilla M, Sevi A. A mixture of phytosterols from Dunaliella tertiolecta affects proliferation of peripheral blood mononuclear cells and cytokine production in sheep. Vet Immunol Immunopathol. 2012;150:27–35. https://doi.org/10.1016/j.vetimm.2012.08.002.

    Article  CAS  PubMed  Google Scholar 

  165. Franklin ST, Martin KR, Baer RJ, Schingoethe DJ, Hippen AR. Dietary marine algae (Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and transvaccenic acids in milk of dairy cows. J. Nutr.1999;29:2048–2054. https://doi.org/10.1093/jn/129.11.2048

  166. Harun R, Singh M, Forde GM, Danquah MK. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev. 2010;14:1037–47. https://doi.org/10.1016/j.rser.2009.11.004.

    Article  CAS  Google Scholar 

  167. Ginzberg A, Cohen M, Sod-Moriah UA, Shany S, Rosenshtrauch A, Arad A. Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J Appl Phycol. 2000;12:325–30. https://doi.org/10.1023/a:1008102622276.

    Article  Google Scholar 

  168. Ekmay R, Gatrell S, Lum K, Kim J, Lei XG. Nutritional and metabolic impacts of a defatted green marine microalgal (Desmodesmus sp.) biomass in diets for weanling pigs and broiler chickens. J Agr Food Chem. 2014;6:9783–91. https://doi.org/10.1021/jf501155n.

    Article  CAS  Google Scholar 

  169. Bruneel C, Lemahieu C, Fraeye I, Ryckebosch E, Muylaert K, Buyse J, Foubert I. Impact of microalgal feed supplementation on omega-3 fatty acid enrichment of hen eggs, 5. J Funct Foods. 2013;5:897–904. https://doi.org/10.1016/j.jff.2013.01.039.

    Article  CAS  Google Scholar 

  170. Wu YB, Li L, Wen ZG, Yan HJ, Yang PL, Tang J, Xie M, Hou SS. Dual functions of eicosapentaenoic acid-rich microalgae: enrichment of yolk with n-3 polyunsaturated fatty acids and partial replacement for soybean meal in diet of laying hens. Poult Sci. 2019;98:350–7. https://doi.org/10.3382/ps/pey372.

    Article  CAS  PubMed  Google Scholar 

  171. Gatrell SK, Magnuson AD, Barcus M, Lei XG. Graded levels of a defatted green microalgae inclusion in diets for broiler chicks led to moderate up-regulation of protein synthesis pathway in the muscle and liver. Algal Res. 2018;29:290–6. https://doi.org/10.1016/j.algal.2017.11.039.

    Article  Google Scholar 

  172. Manor ML, Kim J, Derksen TJ, Schwartz RL, Roneker CA, Bhatnagar RS, Lei XG. Defatted microalgae serve as a dual dietary source of highly bioavailable iron and protein in an anemic pig model. Algal Res. 2017;26:409–14. https://doi.org/10.1016/j.algal.2017.07.018.

    Article  Google Scholar 

  173. Muller-Feuga A. The role of microalgae in aquaculture: Situation and trends. J Appl Phycol. 2000;12:527–34. https://doi.org/10.1023/a:1008106304417.

    Article  Google Scholar 

  174. Cheng P, Zhou C, Chu R, Chang T, Xu J, Ruan R, Chen P, Yan X. Effect of microalgae diet and culture system on the rearing of bivalve mollusks: Nutritional properties and potential cost improvements. Algal Res. 2020;51:102076. https://doi.org/10.1016/j.algal.2020.102076.

    Article  Google Scholar 

  175. Zhu C, Han D, Li X, Zhai X, Chi Z, Zhao Y, Cai H. Cultivation of aquaculture feed Isochrysis zhangjiangensis in low-cost wave driven floating photobioreactor without aeration device. Bioresour Technol. 2019;293:122018. https://doi.org/10.1016/j.biortech.2019.122018.

    Article  CAS  PubMed  Google Scholar 

  176. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96.

    Article  CAS  Google Scholar 

  177. Jaseera KV, Kaladharan P, Thraustochytrids in aquaculture: Can it replace fish meal in Aquafeed?, Aquaculture Spectrum.2019;2:25–27. http://eprints.cmfri.org.in/14335/

  178. Scott SD, Armenta RE, Berryman KT, Norman AW. Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a Thraustochytrid. Enzyme Microb Technol. 2011;48:267–72. https://doi.org/10.1016/j.enzmictec.2010.11.008.

    Article  CAS  PubMed  Google Scholar 

  179. Radhakrishnan S, Seenivasan C, Muralisankar T. Effect of dietary replacement of fishmeal with Chlorella vulgaris on growth performance, energy utilization and digestive enzymes in Macrobrachium rosenbergii postlarvae. Int J Fish Aquat. 2015;7:62–70. https://doi.org/10.5897/IJFA15.0471.

    Article  Google Scholar 

  180. Liu J, Sun Z, Gerken H, Huang J, Chen F. Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J Appl Phycol. 2013;25:1447–56. https://doi.org/10.1007/s10811-013-9974-x.

    Article  CAS  Google Scholar 

  181. Zhang F, Man YB, Mo WY, Wong MH. Application of Spirulina in aquaculture: a review on wastewater treatment and fish growth. Rev Aquacult. 2020;12:582–99. https://doi.org/10.1111/raq.12341.

    Article  Google Scholar 

  182. Gbadamosi OK, Lupatsch I. Effects of dietary Nannochloropsis salina on the nutritional performance and fatty acid profile of Nile tilapia, Oreochromis niloticus. Algal Res. 2018;33:48–54. https://doi.org/10.1016/j.algal.2018.04.030.

    Article  Google Scholar 

  183. Tibbetts SM, Yasumaru F, Lemos D. In vitro prediction of digestible protein content of marine microalgae (Nannochloropsis granulata) meals for Pacific white shrimp (Litopenaeus vannamei) and rainbow trout (Oncorhynchus mykiss). Algal Res. 2017;21:76–80. https://doi.org/10.1016/j.algal.2016.11.010.

    Article  Google Scholar 

  184. Sørensen M, Berge GM, Reitan KI, Ruyter B. Microalga Phaeodactylum tricornutum in feed for Atlantic salmon (Salmo salar) -Effect on nutrient digestibility, growth and utilization of feed. Aquac. 2016;460:116–23. https://doi.org/10.1016/j.aquaculture.2016.04.010.

    Article  CAS  Google Scholar 

  185. Rahman NA, Khatoon H, Yusuf N, Banerjee S, Haris NA, Lananan F, Tomoyo K. Tetraselmis chuii biomass as a potential feed additive to improve survival and oxidative stress status of Pacific white-leg shrimp Litopenaeus vannamei postlarvae. Int Aquat Res. 2017;9:235–47. https://doi.org/10.1007/s40071-017-0173-2.

    Article  Google Scholar 

  186. Lu Y, Xu J. Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci. 2015;20:273–82.

    Article  CAS  Google Scholar 

  187. Jager K, Bartók T, Ordog V, Barnabas B. Improvement of maize (Zea mays L) anther culture responses by algae-derived natural substances. S Afr J Bot. 2010;76:511–6. https://doi.org/10.1016/j.sajb.2010.03.009.

    Article  CAS  Google Scholar 

  188. Romero García JM, Acién Fernández FG, Fernández Sevilla JM. Development of a process for the production of l-amino-acids concentrates from microalgae by enzymatic hydrolysis. Bioresour Technol. 2012;112:164–70. https://doi.org/10.1016/j.biortech.2012.02.094.

    Article  CAS  PubMed  Google Scholar 

  189. Pandey SN, Abid M, Khan MMAA. Diversity, functions, and stress responses of soil microorganisms. In: Plant Microbiome: Stress Response. New York: Springer; 2018. p. 1–19.

    Google Scholar 

  190. Rossi F, Li H, Liu Y, De Philippis R. Cyanobacterial inoculation (cyanobacterisation): perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal. Earth-Sci Rev. 2017;171:28–43.

    Article  Google Scholar 

  191. Odegard IYR, van der Voet E. The future of food - Scenarios and the effect on natural resource use in agriculture in 2050. Ecol Econ. 2014;97:51–9. https://doi.org/10.1016/j.ecolecon.2013.10.005.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, India and CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India for facilitating the research activities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception, design, analysis, and drafting of the article. All authors revised the paper prior to the submission.

Corresponding author

Correspondence to Sunil Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Statement of informed consent

No conflicts, informed consent, or human or animal rights are applicable to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udayan, A., Pandey, A.K., Sharma, P. et al. Emerging industrial applications of microalgae: challenges and future perspectives. Syst Microbiol and Biomanuf 1, 411–431 (2021). https://doi.org/10.1007/s43393-021-00038-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-021-00038-8

Keywords

Navigation