Skip to main content
Log in

An integrated vision of the Green Chemistry evolution along 25 years

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

The objective of the present review on the evolution of Green Chemistry (GC), since its emergence until 2016 (25th anniversary), aimed an integrated vision of its progress along the three phases of its development: emergence, divulgation and consolidation. The methodology involved the analysis of a selection of bibliography on the evolution of GC collected from issues of the ACS symposia series; editorials in specialized GC journals; and commemorative birthday papers/editorials of these journals and of the GC itself. The analysis allowed to identify and discuss the characteristics and conceptions of GC agents about fundamental concepts and procedures, in order to visualize and better understand the state of knowledge and the subject areas that make up the field. The main alterations identified in the evolution of GC were: it acquired a better defined identity, with more participation of academy and increased scope; was progressively framed in sustainability; has been aspiring to a holistic frame (but it is still dominated by its original reductionism) and to a change on the nature of the innovation for its implementation, from incremental to transformative. The analysis suggests that for supporting expansion and consolidation of GC the following aspects deserve attention: full validation of chemical greenness by metrics; better characterization of the frontiers of GC research areas/themes; increased integration between academy and industry; and penetration in chemistry curricula. Its basic philosophy being the practice of a chemistry more focused on the environment preservation, GC means a new stage in nature and in the history of Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Anastas and Warner (1998, p. 11) defined GC as: “… the utilization of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products”.

  2. The word consolidation is not used here meaning stability or mature science, but rather acknowledgement by the whole area of Chemistry (Howard-Grenville et al. 2017).

  3. In brackets the parts of the words eliminated in searches are presented.

References

  • Abraham, M.A., Moens, L.: Clean Solvents—Alternative Media for Chemical Reactions and Processing. ACS SS 819. American Chemical Society, Washington DC (2002)

    Book  Google Scholar 

  • Adams, J.P., Alder, C.M., Andrews, I., Bullion, A.M., Campbell-Crawford, M., Darcy, M.G., Hayler, G.D., Henderson, R.K., Oare, C.A., Pendrak, I., Redman, A.M., Shuster, L.E., Sneddon, H.F., Walker, M.D.: Development of GSK’s reagent guides—embedding sustainability into reagent selection. Green Chem. 15, 1542–1549 (2013)

    Article  Google Scholar 

  • Alder, C.M., Hayler, J.D., Henderson, R.K., Redman, A.M., Shukla, L., Shuster, L.E., Sneddon, H.F.: Updating and further expanding GSK’s solvent sustainability guide. Green Chem. 18, 3179–3890 (2016)

    Article  Google Scholar 

  • Allen, D.T., Hwang, B.-J., Licence, P., Pradeep, T., Subramaniam, B.: Advancing the use of sustainability metrics. ACS Sustai. Chem. Eng. 3, 2359–2360 (2015)

    Article  Google Scholar 

  • Amato, I.: The slow birth of green chemistry. Science 259, 1538–1541 (1993)

    Google Scholar 

  • Anastas, P.T., Farris, C.A. (eds.): Benign by Design—Alternative Synthetic Design for Pollution. ACS SS 577. American Chemical Society, Washington DC (1994)

    Google Scholar 

  • Anastas, P.T., Williamson, T.C.A. (eds.): Green Chemistry: Designing Chemistry for the Environment. ACS SS 626. American Chemical Society, Washington DC (1996)

    Google Scholar 

  • Anastas, P.T., Breen, J.J.: Design for the environment and green chemistry: the heart and soul of industrial ecology. J. Cleaner Prod. 5(1–2), 97–102 (1997)

    Article  Google Scholar 

  • Anastas, P., Warner, J.C.: Green Chemistry: Theory and Practice. Oxford University Press, Oxford (1998)

    Google Scholar 

  • Anastas, P.T., Williamson, T.C.A. (eds.): Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes. Oxford University Press, New York (1998)

    Google Scholar 

  • Anastas, P.T., Lankey, R.L.: Life cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chem. 2(6), 289–295 (2000)

    Article  Google Scholar 

  • Anastas, P.T., Heine, L.G., Williamson, T.C.: Green Chemical Synthesis and Processes. ACS SS 767. American Chemical Society, Washington DC (2000)

    Book  Google Scholar 

  • Anastas, P.T., Heine, L.G., Williamson, T.C. (eds.): Green Engineering. ACS SS 766. American Chemical Society, Washington DC (2001)

    Google Scholar 

  • Anastas, P.T.: Green chemistry as applied to solvents. In: Abraham, M.A., Moens, L. (eds.) Clean Solvents: Alternative Media for Chemical Reactions and Processing. ACS SS 819. American Chemical Society, Washington DC (2002)

    Google Scholar 

  • Anastas, P.T., Lankey, R.L.: Sustainability through green chemistry and engineering . In: Anastas, P.T., Lankey, R.L. (eds.) Advancing Sustainability through Green Chemistry and Engineering. ACS S S823. American Chemical Society, Washington DC (2002)

    Google Scholar 

  • Anastas, P.T., Zimmerman, J.B.: Design through the 12 principles of green engineering. Env. Sci Tech. 37(5), 94A-101A (2003)

    Article  Google Scholar 

  • Anastas, P.: Green chemistry design, innovation, solutions and a cohesive system. Green Chem. Lett. Rev. 1(1), 3–4 (2007)

    Article  Google Scholar 

  • Anastas, P.: Fusing green chemistry and green engineering. Green Chem. 10(6), 607 (2008)

    Article  Google Scholar 

  • Anastas, P.T., Levy, I.J., Parent, K.E.: Green Chemistry Education: Changing the Course of Chemistry. ACS SS 1011. American Chemical Society, Washington DC (2009)

    Book  Google Scholar 

  • Anastas, P.: Twenty years of green chemistry. Chem. Eng. News 89(26), 62–65 (2011)

    Google Scholar 

  • Anastas, P.: Green chemistry next: moving from evolutionary to revolutionary. Aldrichimia Acta 48(1), 3–4 (2015)

    Google Scholar 

  • Anastas, P., Han, B., Leitner, W., Poliakoff, M.: “Happy silver anniversary”: green chemistry at 25. Green Chem. 18(1), 12–13 (2016)

    Article  Google Scholar 

  • Machado, A.A.S.C.: Da Gênese ao Ensino da Química Verde. Quim. Nova 34(3), 535–543 (2011)

    Article  Google Scholar 

  • Machado, A.S.C.M.: Holistic green chemistry metrics for use in teaching laboratories. In: Zuin, V.G., Mammino, L. (eds.) Worldwide Trends in Green Chemistry Education, Ch 8, pp. 111–136. Royal Society of Chemistry, Cambridge (2015)

    Chapter  Google Scholar 

  • Azapagic, A.: Life-cycle assessment and its application to selection. Des. Optim. Chem. Eng. J. 73, 1–21 (1999)

    Article  Google Scholar 

  • Bashkin, J.K.: Editorial: green chemistry: Can we rally together, or will we fragment into pieces? Green Chem. 4(2), G14 (2002)

    Article  Google Scholar 

  • Breen, J.J., Dellarco, M.J.: Pollution Prevention – The New Environmental Ethics, : In: Breen, J.J., Dellarco, M.J. (eds.) Pollution prevention in industrial processes: the role of process analytical chemistry, Ch. 1, ACS SS 508, pp. 2–12. American Chemical Society, Washington DC (1992)

    Chapter  Google Scholar 

  • Browner, C.M.: Pollution prevention takes center stage. EPA J. 19(3), 6–8 (1993)

    Google Scholar 

  • Calvo-Flores, F.G.: Sustainable chemistry metrics. Chemsuschem 2, 905–919 (2009)

    Article  Google Scholar 

  • Cevasco, G., Chiappe, C.: Are ionic liquids a proper solution to current environmental challenges? Green Chem. 16, 2375–2385 (2014)

    Article  Google Scholar 

  • Chen, G., Xiao, L.: Selecting publication keywords for domain analysis in bibliometrics: a comparison of three methods. J. Informetrics 10, 212–223 (2016)

    Article  Google Scholar 

  • Clark, J.: (1999a) Editorial. Green Chem. 1(1), G1–G2 (1999)

    Article  Google Scholar 

  • Clark, J.: Green chemistry—challenges and opportunities. Green Chem. 1(1), 1–8 (1999)

    Article  Google Scholar 

  • Clark, J.: Editorial. Green Chem. 2(2), G33-34 (2000)

    Article  Google Scholar 

  • Clark, J.: Editorial: green chemistry in developing countries. Green Chem. 2(5), G84 (2000)

    Article  Google Scholar 

  • Clark, J.: Evolution and growth in 2001. Green Chem. 3(1), G2 (2001)

    Article  Google Scholar 

  • Clark, J.: Editorial: green all the way through. Green Chem. 4(3), G28 (2002)

    Article  Google Scholar 

  • Clark, J.: Editorial. Green Chem. 5(6), G83 (2003)

    Article  Google Scholar 

  • Clark, J.H.: Green chemistry: today (and tomorrow). Green Chem. 8(1), 17–21 (2006)

    Article  Google Scholar 

  • Clark, J., Sheldon, R., Raston, C., Poliakoff, M., Leitner, W.: 15 years of green chemistry. Green Chem. 16(1), 18–23 (2014)

    Article  Google Scholar 

  • Chamizo, J.A.: La imagen pública de la química. Educ. Quím. 22(4), 320–331 (2011)

    Google Scholar 

  • Chamizo, J.A.: The fifth chemical revolution: 1973–1999. Found. Chem. 19(2), 157–179 (2017)

    Article  Google Scholar 

  • Collins, T.J.: Introducing green chemistry in teaching and research. J. Chem. Educ. 72(11), 965–966 (1995)

    Article  Google Scholar 

  • Collins, T.J.: Green chemistry. Macmillan Encyclopedia of Chemistry. Macmillan Publishing. New York 2, 691–697 (1997)

    Google Scholar 

  • Collins, T.J.: Essays on science and society: toward sustainable chemistry. Science 291, 48–49 (2001)

    Article  Google Scholar 

  • Collins, T.J.: The importance of sustainability ethics, toxicity and ecotoxicity in chemical education and research. Green Chem. 5(4), G51–G52 (2003)

    Article  Google Scholar 

  • Collins, T.J.: Review of the twenty-three-year evolution of the first university course in green chemistry: teaching future leaders how to create sustainable societies. J. Cleaner Prod. 140, 93–110 (2017)

    Article  Google Scholar 

  • Constable, D.J.C., Curtzons, A.D., Santos, L.M.F., Green, G.R., Hanna, R.E., Hayler, J.D., Kitterringham, J., Macguire, M.A., Richardison, J.E., Smith, P., Webb, R.L., Yu, M.: Green chemistry measures for process research and development. Green Chem. 3, 7–9 (2001)

    Article  Google Scholar 

  • Constable, D.J.C., Curtzons, A.D., Cunningham, V.L.: Metrics to “green” chemistry—Which are the best? Green Chem. 4, 521–527 (2002)

    Article  Google Scholar 

  • Constable, D.J.C., Dunn, P.J., Hayler, J.D., Humphrey, G.R., Leazer, J.L., Jr., Linderman, R.J., Lorenz, K., Manley, J., Pearlman, B.A., Wells, A., Zaksh, A., Zhang, T.Y.: Key green chemistry research areas—a perspective from pharmaceutical manufacturers. Green Chem. 9, 411–420 (2007)

    Article  Google Scholar 

  • Curtzons, A.D., Constable, D.J.C., Mortimer, D.N., Cunningham, V.L.: So you think your process is green, How do you Know? Using principles of sustainability to determine what is green—a corporate perspective. Green Chem. 3, 1–6 (2001)

    Article  Google Scholar 

  • Delilovich, I., Palkovits, R.: Catalytic versus stoichiometric reagents as a key concept for green chemistry. Green Chem. 18(3), 590–593 (2016)

    Article  Google Scholar 

  • DeVitto, C.S., Garrett, R.L. (eds.): Designing Safer Chemicals—Green Chemistry for Pollution Prevention, ACS SS 640. American Chemical Society, Washington DC (1966)

    Google Scholar 

  • Dichiarante, V., Ravelli, D., Albini, A.: Green chemistry: state of the art through an analysis of the literature. Green Chem. Let. Rev. 3(2), 105–113 (2010)

    Article  Google Scholar 

  • Epicoco, M., Oltra, V., Saint Jean, M.: Knowledge dynamics and sources of eco-innovations: mapping the green chemistry community. Technol. Forecast. Soc. Chang. 81, 388–402 (2014)

    Article  Google Scholar 

  • Gilbertson, L.M., Zimmerman, G.B., Plata, D.L., Hutchison, J.E., Anastas, P.: Designing nanomaterials to maximize undesirable implications guided by the principles of green chemistry. Chem. Soc. Rev. 44, 5758–5777 (2015)

    Article  Google Scholar 

  • Graedel, T.E.: Green chemistry as systems science. Pure Appl. Chem. 73(8), 1243–1246 (2001)

    Article  Google Scholar 

  • Grassian, V.H., Meyer, G.: (Co-chairmen): viewpoint: chemistry for a sustainable future. Environ. Sci. Technol. 41(14), 4840–4846 (2007)

    Article  Google Scholar 

  • Green, M.: Environmentally friendly refining. Green Chem. 10(12), 1248 (2008)

    Article  Google Scholar 

  • Haack, J.A., Hutchison, J.E.: Green chemistry education: 25 years of progress and 25 years ahead. ACS Sust. Chem. Eng. 4(11), 5889–5896 (2016)

    Article  Google Scholar 

  • Henderson, R.K., Hill, A.P., Redman, A.M., Sneddon, H.F.: Development of GSK’s acid and base selection guides. Green Chem. 17(2), 945–949 (2015)

    Article  Google Scholar 

  • Hendrickson, J.B.: Teaching alternative syntheses: the syngen program. In: Anastas, P.T., Williamson, C.A. (eds.) Green Chemistry - Designing Chemistry for the Environment Ch 16 ACS SS 626, pp. 214–221. American Chemical Society, Washington DC (1996)

    Chapter  Google Scholar 

  • Howard-Grenville, J., Nelson, A.J., Earle, A.G., Haack, J.A., Young, D.M.: ‘“If chemists don’t do it, Who is going to?”’ Peer-driven occupational change and the emergence of green chemistry. Adm. Sci. Q. 62(3), 524–560 (2017)

    Article  Google Scholar 

  • IUPAC - Interdivisional Committee on Green Chemistry for Sustainable Development (ICGCSD) (2017). https://iupac.org/who-we-are/committees/committee-details/?body_code=041. Access 11, 2017

  • Jackson, W.R., Eva, M.C., Hearn, M.T.: Closing Pandora`s box: chemical products should be designed to preserve efficacy of function while reducing toxicity. Green Chem. 18(15), 4140–4144 (2016)

    Article  Google Scholar 

  • Jessop, P.G.: The use of auxiliary substances (e.g. solvents separation agents) should be made unnecessary wherever possible and innocuous when used. Green Chem. 18(9), 2577–2578 (2016)

    Article  Google Scholar 

  • Jimenez-Gonzalez, C., Poechlauer, P., Broxterman, Q.B., Yang, B.-S., Ende, D., Baird, J., Bertsch, C., Hannah, R.E., Dell’Orco, O., Noorman, H., Yee, S., Reintjens, R., Wells, A., Massonneau, V., Manley, J.: Key green engineering research areas for sustainable manufacturing: a perspective from pharmaceutical and fine chemicals manufacturers. Org Process Res. Dev. 15, 900–911 (2011)

    Article  Google Scholar 

  • Kidwai, M., Mohan, R.: Green chemistry: an innovative technology. Found. Chem. 7, 269–287 (2005)

    Article  Google Scholar 

  • Lankey, R.L., Anastas, P.T. (eds.): Advancing Sustainability through Green Chemistry and Engineering, ACS SS 823. American Chemical Society, Washington DC (2002)

    Google Scholar 

  • Leitner, W.: Editorial: green chemistry: a new phase. Green Chem. 6(1), G1 (2004)

    Article  Google Scholar 

  • Leitner, W.: Editorial: focus on education in green chemistry. Green Chem. 6(8), 351 (2004)

    Article  Google Scholar 

  • Leitner, W.: Editorial: green solvents for synthesis meeting. Green Chem. 7(5), 253 (2005)

    Google Scholar 

  • Leitner, W.: Editorial: reflections on “green chemistry” in 2005. Green Chem. 8(2), 125 (2006)

    Article  Google Scholar 

  • Leitner, W., Poliakoff, M.: Supercritical fluids in green chemistry. Green Chem. 10(7), 730 (2008)

    Article  Google Scholar 

  • Li, C.-J.: Green chemistry, green solvents, and free radical reactions in aqueous media. Green Chem. 10(2), 151–152 (2008)

    Article  Google Scholar 

  • Li, C.-J.: Reflection and perspective on green chemistry development for chemical synthesis—daoist insights. Green Chem. 18(7), 1836–1838 (2016)

    Article  Google Scholar 

  • Linthorst, J.A.: An overview: origins and development of green chemistry. Found. Chem. 12, 55–68 (2010)

    Article  Google Scholar 

  • Llevot, A., Meier, M.A.R.: Renewability—a principle of utmost importance! Green Chem. 18(18), 4800–4803 (2016)

    Article  Google Scholar 

  • Logar, N.: Chemistry, green chemistry, and the instrumental valuation of sustainability. Minerva 49, 113–136 (2011)

    Article  Google Scholar 

  • Machado, A.: Introdução às Métricas da Química Verde—Uma Visão Sistémica. Editora UFSC, Florianópolis (2014)

    Google Scholar 

  • MacFarlane, D.R., Zhang, X., Kar, M.: Measure and control: molecular management is a key to the sustainocene. Green Chem. 18(21), 5689–5692 (2016)

    Article  Google Scholar 

  • Macquarrie, D.: Editorial: putting things in perspective. Green Chem. 2(3), G64 (2000)

    Article  Google Scholar 

  • Manley, J.B., Anastas, P.T., Cue, B.W., Jr.: Frontiers in green chemistry: meeting the grand challenges for sustainalibity in R&D and manufactuting. J. Cleaner Prod. 16(6), 743–750 (2008)

    Article  Google Scholar 

  • Marques, C.A., Machado, A.A.S.C.: Environmental sustainability: implications and limitations to green chemistry. Found. Chem. 16(2), 125–147 (2014)

    Article  Google Scholar 

  • Marques, C.A., Machado, A.A.S.C.: Una visión sobre propuestas de enseñanza de la Química Verde. Revista Electrónica de Enseñanza de las Ciencias 17(1), 19–43 (2018)

    Google Scholar 

  • Metzger, J.O.: Guest Editoral: Agenda 21 as a guide for green chemistry research anda a sustainable future. Greem Chem. 6(2), G15–G16 (2004)

    Google Scholar 

  • Minhas, H.: Phenomenal growth, but technology keeps green chemistry as the cutting edge. Green Chem. 5(1), G2 (2003)

    Google Scholar 

  • Peters, M., von der Assen, N.: It is better to prevent waste than to treat or clean up waste after it is formed—or: what Benjamin Franklin has to do with “green chemistry.” Green Chem. 18(5), 1172–1174 (2016)

    Article  Google Scholar 

  • Poliakoff, M., Anastas, P.: A principled stance. Nature 413, 257 (2001)

    Article  Google Scholar 

  • Poliakoff, M., Licence, P.: Green chemistry. Nature 450, 810–812 (2007)

    Article  Google Scholar 

  • Poliakoff, M., Leitner, W., Ruthven, S.: Celebrating the tenth year of the Green Chemistry journal. Green Chem. 10(1), 11–12 (2008)

    Article  Google Scholar 

  • Quadrelli, E.A.: 25 years of energy and green chemistry: saving, storing, distributing and using energy responsibly. Green Chem. 18(2), 328–330 (2016)

    Article  Google Scholar 

  • Raston, C.: Editorial: my vision for green chemistry. Green Chem. 5(2), G13 (2003)

    Article  Google Scholar 

  • Raston, C.: Editorial: renewables and green chemistry. Green Chem. 7(2), 57 (2005)

    Article  Google Scholar 

  • Ritter, S.K.: Green chemistry celebrates 25 years of progress. Chem. Eng. News 94(27), 22–25 (2016)

    Google Scholar 

  • Robèrt, K.-H., Broman, G.I., Basile, G.: Analyzing the concept of planetary boundaries from a strategic sustainability perspective: How does humanity avoid tipping the planet? Ecol. Soc. 18(2), 1 (2013)

    Article  Google Scholar 

  • Ruthven, S.: Editorial: happy new year from green chemistry. Green Chem. 8(1), 11–12 (2006)

    Article  Google Scholar 

  • REACH on line: Registration, Evaluation, Authorization and Restriction of Chemicals. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1907&from=en. Access: 12 Jan 2018

  • Scott, J.L., Lee, J.: Appropriate lifetimes, fitting deaths. Green Chem. 18, 6157–6159 (2016)

    Article  Google Scholar 

  • Sheldon, R.A.: Organic synthesis—past, present and future. Chem. Ind. (London) w/v, 903–906 (1992)

  • Sheldon, R.A.: Green chemistry-one year on. Green Chem. 2(1), G1–G3 (2000)

    Article  Google Scholar 

  • Sheldon, R.A.: Green and sustainable chemistry: challenges and perspectives. Green Chem. 10(4), 359–360 (2008)

    Article  Google Scholar 

  • Sheldon, R.A.: Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem. 16, 950–963 (2014)

    Article  Google Scholar 

  • Sheldon, R.A.: Green chemistry and resource efficiency: towards a green economy. Green Chem. 18(11), 3180–3183 (2016)

    Article  Google Scholar 

  • Sjöstrom, J.: Green chemistry in perspective—models for GC activities and GC policy and knowledge areas. Green Chem. 8, 130 (2006)

    Article  Google Scholar 

  • Sneddon, H.F.: Safety first. Green Chem. 18(19), 5082–5085 (2016)

    Article  Google Scholar 

  • Thornton, J.: Implementing green chemistry—an environmental policy for sustainability. Pure Appl. Chem. 73(8), 1231–1236 (2001)

    Article  Google Scholar 

  • Tobiszewski, M., Naniesnik, J., Pena-Pereira, F.: A derivatisation agent selection guide. Green Chem. 14(24), 5911–5922 (2017)

    Article  Google Scholar 

  • Tundo, P., Anastas, P., Black, D.. St.C., Breen, J., Collins, T., Memoli, S., Miyamoto, J., Polyakoff, M., Tumas, W.: Synthetic pathways and processes in green chemistry—introductory overview. Pure Appl. Chem. 72(7), 1207–1228 (2000)

    Article  Google Scholar 

  • Trost, B.M.: The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991)

    Article  Google Scholar 

  • US (1990) - Pollution Prevention Act of 1990. 42 USC §§ 13101–13109.

  • US EPA: A 25th Anniversary Retrospective of the Pollution Prevention Act (2015). Available from http://pprc.org/index.php/2015/blog/a-25th-anniversary-retrospective-of-the-pollution-prevention-act/. Access 11 2017

  • Varma, R.S.: Chemical activation by mechanochemical mixing, microwave and ultrasonic irradiation. Green Chem. 10(11), 1129 (2008)

    Article  Google Scholar 

  • Varma, R.S.: Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 16, 2027–2041 (2008)

    Article  Google Scholar 

  • Veleva, V.R., Cue, B.W., Jr., Todorova, S.: Benchmarking green chemistry adoption by the global pharmaceutical supply chain. ACS Sustainable Chem. Eng. 6(1), 2–14 (2018)

    Article  Google Scholar 

  • Voorhees, K., Hutchinson, J.E.: Green chemistry education roadmap charts the path ahead. Chem. Eng. News 93(38), 46 (2015)

    Article  Google Scholar 

  • Wakaki, T., Oisaki, K., Kanai, N.: Elementary and systemic views of the generation of toxic substances. Green Chem. 18(13), 3681–3683 (2016)

    Article  Google Scholar 

  • Warner, J.C., Cannon, A.S., Dye, K.K.: Green chemistry. Environ. Impact Asses. Rev. 24, 775–799 (2004)

    Article  Google Scholar 

  • Warner, J.: Guest editorial: asking the right questions. Green Chem. 6(3), G27–G28 (2004)

    Google Scholar 

  • Warner, J.: The natural evolution of green chemistry. Green Chem. Lett. Rev. 1(1), 1–2 (2007)

    Article  Google Scholar 

  • WCED: (World Commission on Environmental and Development): Our Common Future. Oxford University Press, Oxford (1987)

    Google Scholar 

  • Willes, C., Watts, P.: Continuous process technology: a tool for sustainable production. Green Chem. 16(1), 55–62 (2014)

    Article  Google Scholar 

  • Winterton, N.: Twelve more green chemistry principles. Green Chem. 3(6), G73–G75 (2001)

    Google Scholar 

  • Winterton, N.: Sense and sustainability: the role of chemistry, green or otherwise. Clean. Techn. Environ. Policy 5, 8–20 (2003)

    Article  Google Scholar 

  • Welton, T.: All solutions have a solvent. Green Chem. 8(1), 13 (2006)

    Article  Google Scholar 

  • Welton, T.: Is catalysis in ionic liquids a potentially green technology? Green Chem. 10(5), 483 (2008)

    Article  Google Scholar 

  • Woodhouse, E.J., Breyman, S.: Green chemistry as a social movement. Sci. Tech. Human Values. 30, 199–222 (2005)

    Article  Google Scholar 

  • Zuin, V.G., Mammino, L.: Worldwide Trends in Green Chemistry Education. RSC, Cambridge (2015)

    Book  Google Scholar 

Download references

Acknowledgements

CAM thanks support of CAPES Foundation (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil) for a sabbatical leave (2017-2018) at the Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal (Estágio Sênior no Exterior 88881.119087/2016-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Marques.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, C.A., Machado, A.A.S.C. An integrated vision of the Green Chemistry evolution along 25 years. Found Chem 23, 299–328 (2021). https://doi.org/10.1007/s10698-021-09396-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-021-09396-6

Keyword

Navigation