Skip to main content
Log in

Properties of Cellulose Nanofibers Extracted from Eucalyptus and their Emulsifying Role in the Oil-in-Water Pickering Emulsions

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this work, nanocellulose particles were obtained from eucalyptus fibers by high-pressure homogenization (CNF) and by high-intensity ultrasound (SCNF). The nanocellulose was applied as a solid emulsifier for soybean oil in water (O/W) emulsions. The adding of 0.25–1 wt.% of both CNF and SCNF produced stable O/W emulsions without conventional surfactants. SCNF emulsions showed the highest stability and displayed the narrowest size distribution. Zeta potential values (− 40 to − 70 mV) indicated an electrical barrier to the droplet coalescence. The rheological behavior of O/W emulsions stabilized with CNF and SCNF was described by the Herschel-Buckley model. O/W emulsions produced with nanocellulose particles behave as shear thinning fluid, and their behavior index ranged from 0.33 to 0.68. Both CNF and SCNF emulsions displayed maximum yield stress at a particle concentration of 0.5 wt.% and 0.75 wt.%, respectively. Besides, the prepared O/W emulsions using 0.5 to 1.00 wt.% CNF or SCNF did not showed phase separation until 30 days of rest. The data point out to the feasibility of using nanocellulose as a natural emulsifier, which can replace conventional surfactants.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The authors confirm total data transparency in this publication.

Code availability

The authors confirm they have used Microsoft word, Microsoft Excel, Origin Lab software and built-in software to the data assessment and analysis.

References

  1. Santos, R.G., Alencar, A.C.: Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: a review. Int. J. Hydrogen Energy 45(36), 18114–18132 (2020)

    Google Scholar 

  2. Voloshin, R.A., Rodionova, M.V., Zharmukhamedov, S.K., Veziroglu, T.N., Allakhverdiev, S.I.: Biofuel production from plant and algal biomass. Int. J. Hydrogen Energy 41, 17257–17273 (2016)

    Google Scholar 

  3. Demirbas, A.: Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manag. 49, 2106–2116 (2008)

    Google Scholar 

  4. Li, Q., Wang, Y., Wu, Y.: Flexible cellulose nanofibrils as novel pickering stabilizers: the emulsifying property and packing behavior. Food Hydrocolloids 88, 180–189 (2019)

    Google Scholar 

  5. Li, X., Ding, L., Zhang, Y., Wang, B., Jiang, Y., Feng, X., Mao, Z., Sui, X.: Oil-in-water Pickering emulsions from three plant-derived regenerated celluloses. Carbohyd. Polym. 207, 755–763 (2019)

    Google Scholar 

  6. Gong, X., Wang, Y., Chen, L.: Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Carbohyd. Polym. 169, 295–303 (2017)

    Google Scholar 

  7. Kalashnikova, I., Bizot, H., Bertoncini, P., Cathala, B., Capron, I.: Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter. 9(3), 952–959 (2013)

    Google Scholar 

  8. Binks, B.P., Lumsdon, S.O.: Effects of oil type and aqueous phase composition on oil-water mixtures containing particles of intermediate hydrophobicity. Phys. Chem. Chem. Phys. 2, 2959–2967 (2000)

    Google Scholar 

  9. Briggs, N., Raman, K.A.Y., Barrett, L., Brown, C., Li, B., Leavitt, D., Aichele, C.P., Crossley, S.: Stable pickering emulsions using multi-walled carbon nanotubes of varying wettability. Colloids Surfaces A: Physicochem. Eng. Aspects 537, 227–235 (2018)

    Google Scholar 

  10. Hu, J.W., Yen, M.W., Wang, A.J., Chu, I.M.: Effect of oil structure on cyclodextrin-based Pickering emulsions for bupivacaine topical application. Colloids Surf., B 161, 51–58 (2018)

    Google Scholar 

  11. Zhu, J.Y., Tang, C.H., Yin, S.W., Yang, X.Q.: Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohyd. Polym. 181, 727–735 (2018)

    Google Scholar 

  12. Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, D.: Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50, 5438–5466 (2011)

    Google Scholar 

  13. Shaw, DJ.: Introduction to colloid and surface chemistry, 4th edn. Butterworth-Heinemann, Oxford (1992)

  14. De Pretto, C., Giordano, R.L.C., Tardioli, P.W., Costa, C.B.C.: Possibilities for producing energy, fuels, and chemicals from soybean: a biorefinery concept. Waste Biomass Valor. 9, 1703–1730 (2018)

    Google Scholar 

  15. Ojala, J., Sirviö, J.A., Liimatainen, H.: Nanoparticle emulsifiers based on bifunctionalized cellulose nanocrystals as marine diesel oil–water emulsion stabilizers. Chem. Eng. J. 288, 312–320 (2016)

    Google Scholar 

  16. Li, X., Li, J., Gong, J., Kuang, Y., Mo, L., Song, T.: Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions. Carbohyd. Polym. 183, 303–310 (2018)

    Google Scholar 

  17. Panagopoulou, E., Tsouko, E., Kopsahelis, N., Koutinas, A., Mandala, I., Evageliou, V.: Olive oil emulsions formed by catastrophic phase inversion using bacterial cellulose and whey protein isolate. Colloids Surf. A: Physicochem. Eng. Aspects 486, 203–210 (2015)

    Google Scholar 

  18. Abdul Khalil, H.P.S., Davoudpour, Y., Islam, N., Mustapha, A., Sudesh, K., Dungani, R., Jawaid, M.: Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd. Polym. 99, 649–665 (2014)

    Google Scholar 

  19. George, J., Sabapathi, S.N.: Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl. 8, 45–54 (2015)

    Google Scholar 

  20. Vallejos, M.E., Felissia, F.E., Area, M.C., Ehman, N.V., Tarrés, Q., Mutjé, P.: Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohyd. Polym. 139, 99–105 (2016)

    Google Scholar 

  21. Perrin, L., Gillet, G., Gressin, L., Desobry, S.: Interest of pickering emulsions for sustainable micro/nanocellulose in food and cosmetic applications. Polymers 12, 2385–2399 (2020)

    Google Scholar 

  22. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)

    Google Scholar 

  23. Wang, Y., Wei, X., Li, J., Wang, F., Wang, Q., Zhang, Y., Kong, L.: Homogeneous isolation of nanocellulose from eucalyptus pulp by high pressure homogenization. Ind. Crops Prod. 104, 237–241 (2017)

    Google Scholar 

  24. Pokhrel, N., Vabbina, P.K., Pala, N.: Sonochemistry: science and engineering. Ultrason. Sonochem. 29, 104–128 (2016)

    Google Scholar 

  25. McClements, D.J.: Food Emulsions: Principles, Practice and Techniques. CRC Press, New York (1999)

    Google Scholar 

  26. McClements, D.J., Jafari, S.M.: Improving emulsion formation, stability and performance using mixed emulsifiers: a review. Adv. Coll. Interface. Sci. 251, 55–79 (2018)

    Google Scholar 

  27. Costa, A.L.R., Gomes, A., Tibolla, H., Menegalli, F.C., Cunha, R.L.: Cellulose nanofibers from banana peels as a Pickering emulsifier: High-energy emulsification processes. Carbohyd. Polym. 194, 122–131 (2018)

    Google Scholar 

  28. Schramm, L.L.: Emulsions, foams, and suspensions: fundamentals and applications. Wiley-VCH GmbH & Co., Weinheim (2005)

  29. Derkach, S.: Rheology of emulsions. Adv. Coll. Interface. Sci. 151, 1–23 (2018)

    Google Scholar 

  30. Rosen, M.: Surfactants and interfacial phenomena. John Wiley & Sons (1989)

    Google Scholar 

  31. Zhang, H., Qian, Y., Chen, S., Zhao, Y.: Physicochemical characteristics and emulsification properties of cellulose nanocrystals stabilized O/W pickering emulsions with high -OSO3- groups. Food Hydrocolloids 96, 267–277 (2019)

    Google Scholar 

  32. Santos, R.G., Bannwart, A.C., Briceño, M.I., Loh, W.: Physico-chemical properties of heavy crude oil-in-water emulsions stabilized by mixtures of ionic and non-ionic ethoxylated nonylphenol surfactants and medium chain alcohols. Chem. Eng. Res. Des. 89(7), 957–967 (2011)

    Google Scholar 

  33. Lee, J., Babadagli, T.: Optimal design of pickering emulsions for heavy oil recovery improvement. J. Dispersion Sci. Technol. (2019). https://doi.org/10.1080/01932691.2019.1650754

    Article  Google Scholar 

  34. Yorgancioglu, A., Bayramoglu, E.E.: Production of cosmetic purpose collagen containing antimicrobial emulsion with certain essential oils. Ind. Crops Prod. 44, 378–382 (2013)

    Google Scholar 

  35. Paukkonen, H., Kunnari, M., Laurén, P., Hakkarainen, T., Auvinen, V.V., Oksanen, T., Koivuniemi, R., Yliperttula, M., Laaksonen, T.: Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release. Int. J. Pharm. 532, 269–280 (2017)

    Google Scholar 

  36. Xu, C., Cao, L., Zhao, P., Zhou, Z.: Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release. Chem. Eng. J. 348, 244–254 (2018)

    Google Scholar 

  37. Corral, M.L., Cerrutti, P., Vázquez, A., Califano, A.: Bacterial nanocellulose as a potential additive for wheat bread. Food Hydrocolloids 67, 189–196 (2017)

    Google Scholar 

  38. Solans, C., Solé, I.: Nano-emulsions: formation by low-energy methods. Curr. Opin. Colloid Interface Sci. 17, 246–254 (2012)

    Google Scholar 

  39. Tonoli, G.H.D., Teixeira, E.M., Corrêa, A.C., Marconcini, J.M., Caixeta, L.A., Pereira-da-Silva, M.A., Mattoso, L.H.C.: Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohyd. Polym. 89, 80–88 (2012)

    Google Scholar 

  40. Cheng, Q., Wang, S., Rials, T.: Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Composites: Part A 40, 218–224 (2009)

    Google Scholar 

  41. Nechyporchuk, O., Belgacem, M.N., Pignon, F.: Current progress in rheology of cellulose nanofibril suspensions. Biomacromol 17, 2311–2320 (2016)

    Google Scholar 

  42. Karppinen, A., Saarinen, T., Salmela, J., Laukkanen, A., Nuopponen, M., Seppala, J.: Flocculation of microfibrillated cellulose in shear flow. Cellulose 19, 1807–1819 (2012)

    Google Scholar 

  43. Herrick, F.W., Casebier, R.L., Hamilton, J.K., Sandberg, K.R.: Microfibrillated cellulose: morphology and accessibility. J. Appl. Polyme. Sci. Polym. Symp. 37, 797–813 (1983)

    Google Scholar 

  44. Gruneberger, F., Kunniger, T., Zimmermann, T., Arnold, M.: Rheology of nanofibrillated cellulose/acrylate systems for coating applications. Cellulose 21, 1313–1326 (2014)

    Google Scholar 

  45. Lu, Y., Qian, X., Xie, W., Zhang, W., Huang, J., Wu, D.: Rheology of the sesame oil-in-water emulsions stabilized by cellulose nanofibers. Food Hydrocolloids 94, 114–127 (2019)

    Google Scholar 

  46. Perkins, E.G.: Composition of soybeans and soybean. In: Erickson, D.R. (ed.) Products Practical Handbook of Soya Processing and Utilization, pp. 9–28. Academic Press and AOCS Press, St. Louis (1995)

  47. Wang, S., Cheng, Q.A.: A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J. Appl. Polym. Sci. 113, 1270–1275 (2009)

    Google Scholar 

  48. Bussemaker, M.J., Zhang, D.: Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Indus. Eng. Chem. Res. 52, 3563–3580 (2013)

    Google Scholar 

  49. Nechyporchuk, O., Belgacem, M.N., Bras, J.: Production of cellulose nanofibrils: a review of recent advances. Ind. Crops Prod. 93, 2–25 (2016)

    Google Scholar 

  50. Lu, H., Zhang, L., Liu, C., He, Z., Zhou, X., NiI, Y.: A novel method to prepare lignocellulose nanofibrils directly from bamboo chips. Cellulose 25, 7043–7051 (2018)

    Google Scholar 

  51. Ewulonu, C.M., Liu, X., Wu, M., Huang, Y.: Ultrasound-assisted mild sulphuric acid ball milling preparation of lignocellulose nanofibers (LCNFs) from sunflower stalks (SFS). Cellulose 26(7), 4371–4389 (2019)

    Google Scholar 

  52. Frone, A.N., Panaitescu, D.M., Donescu, D., Spataru, C.I., Radovico, C., Trusga, R., Somoghi, R.: Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources 6(1), 487–512 (2011)

    Google Scholar 

  53. Vieira, L.B., Casimiro, M.W., Santos, R.G.: Surface tension of aqueous amoxicillin+Peg systems. Colloid Interf. Sci. Commun. 24, 93–97 (2018)

    Google Scholar 

  54. Santos, R.G., Bannwart, A.C., Loh, W.: Phase segregation, shear thinning and rheological behavior of crude oil-in-water emulsions. Chem. Eng. Res. Des. 92, 1629–1636 (2014)

    Google Scholar 

  55. Spinacé, M.A.S., Lambert, C.S., Fermoselli, K.K.G., De Paoli, M.A.: Characterization of lignocellulosic curaua fibres. Carbohyd. Polym. 77, 47–53 (2009)

    Google Scholar 

  56. Azrina, Z.A.Z., Beg, M.D.H., Rosli, M.Y., Ramli, R., Junadi, N., Alam, A.K.M.M.: Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis. Carbohyd. Polym. 162, 115–120 (2017)

    Google Scholar 

  57. Tomak, E.D., Ay, N., Topaloglu, E., Gumuskaya, E., Yildiz, U.C.: An FT-IR study of the changes in chemical composition of bamboo degraded by brown-rot fungi. Int. Biodeterior. Biodegr. 85, 131–138 (2013)

    Google Scholar 

  58. Manzato, L., Rabelo, L.C.A., Souza, S.M., Silva, C.G., Sanches, E.A., Rabelo, D., Mariuba, L.A.M., Simonsen, J.: New approach for extraction of cellulose from tucumã’s endocarp and its structural characterization. J. Mol. Struct. 1143, 229–234 (2017)

    Google Scholar 

  59. Özgenç, O., Durmaz, S., Boyaci, I.H., Eksi-Kocak, H.: Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 171, 395–400 (2017)

    Google Scholar 

  60. Tibolla, H., Pelissari, F.M., Rodrigues, M.I., Menegalli, F.C.: Cellulose nanofibers produced from banana peel by enzymatic treatment: study of process conditions. Ind. Crops Prod. 95, 664–674 (2017)

    Google Scholar 

  61. Tang, C., Chen, Y., Luo, J., Low, M.Y., Shi, Z., Tang, J., Tam, K.C.: Pickering emulsions stabilized by hydrophobically modified nanocellulose containing various structural characteristics. Cellulose 26(13), 7753–7767 (2019)

    Google Scholar 

  62. Zhai, X., Lin, D., Liu, D., Yang, X.: Emulsions stabilized by nanofibers from bacterial cellulose: new potential food-grade Pickering emulsions. Food Res. Int. 103, 12–20 (2018)

    Google Scholar 

  63. Chumpitaz, L.D.A., Coutinho, L.F., Meirelles, A.J.A.: Surface tension of fatty acids and triglycerides. J. Am. Oil Chem. Soc. 76, 379–382 (1999)

    Google Scholar 

  64. Paximada, P., Tsouko, E., Kopsahelis, N., Koutinas, A.A.: Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocolloids 53, 225–232 (2016)

    Google Scholar 

  65. Silva, C.E.P., Tam, K.C., Bernardes, J.S., Loh, W.: Double stabilization mechanism of O/W Pickering emulsions using cationic nanofibrillated cellulose. J. Colloid Interface Sci. 574, 207–216 (2020)

    Google Scholar 

  66. Sabet, S.S., Martinez, M., Olson, J.: Shear rheology of micro-fibrillar cellulose aqueous suspensions. Cellulose 23, 2943–2953 (2016)

    Google Scholar 

  67. Lu, Q., Lu, P.M., Piao, J.H., Xu, X.L., Chen, J., Zhu, L., Jiang, J.G.: Preparation and physicochemical characteristics of an allicin nanoliposome and its release behavior. Food Sci. Technol. 57, 686–695 (2014)

    Google Scholar 

  68. Gestranius, M., Stenius, P., Kontturi, E., Sjöblom, J., Tammelin, T.: Phase behaviour and droplet size of oil-in-water Pickering emulsions stabilised with plant-derived nanocellulosic materials. Colloids Surf., A 519, 60–70 (2017)

    Google Scholar 

  69. Yokota, S., Kamada, K., Sugiyama, A., Kondo, T.: Pickering emulsion stabilization by using amphiphilic cellulose nanofibrils prepared by aqueous counter collision. Carbohydr. Polym. 226, 115293 (2019)

    Google Scholar 

  70. Bai, L., Huan, S., Xiang, W., Rojas, O.J.: Pickering emulsions by combining cellulose nanofibrils and nanocrystals: phase behavior and depletion stabilization. Green Chem. 20(7), 1571–1582 (2018)

    Google Scholar 

  71. Fujisawa, S., Togawa, E., Kuroda, K.: Nanocellulose-stabilized Pickering emulsions and their applications. Sci Technol. Adv. Mater. 18(1), 959–971 (2017)

    Google Scholar 

  72. Chevalier, Y., Bolzinger, M.A.: Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloid Surf. A-Physicochem. Eng. Aspects 439, 23–34 (2013)

    Google Scholar 

  73. Hong, I.K., Kim, S.I., Lee, S.B.: Effects of HLB value on oil-in-water emulsions: droplet size, rheological behavior, zeta-potential, and creaming index. J. Ind. Eng. Chem. 67, 123–131 (2018)

    Google Scholar 

  74. Ni, Y., Li, J., Fan, L.: Production of nanocellulose with different length from ginkgo seed shells and applications for oil in water Pickering emulsions. Int. J. Biol. Macromol. 149, 617–626 (2020)

    Google Scholar 

  75. Cunha, A.G., Mougel, J.B., Cathala, B., Berglund, L.A., Capron, I.: Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir 30(31), 9327–9335 (2014)

    Google Scholar 

  76. Li, Q., Chen, P., Li, Y., Li, B., Liu, S.: Construction of cellulose-based Pickering stabilizer as a novel interfacial antioxidant: A bioinspired oxygen protection strategy. Carbohydr. Polym. 229, 115395 (2020)

    Google Scholar 

  77. Zanotti, M.A.G., Santos, R.G.: Thixotropic behavior of oil-in-water emulsions stabilized with ethoxylated amines at low shear rates. Chem. Eng. Technol. 42(2), 432–443 (2019)

    Google Scholar 

  78. Jutakridsada, P., Pimsawat, N., Sillanpää, M., Kamwilaisak, K.: Olive oil stability in Pickering emulsion preparation from eucalyptus pulp and its rheology behavior. Cellulose 27, 6189–6203 (2020)

    Google Scholar 

  79. Shafiei-Sabet, S., Martinez, M., Olson, J.: Shear rheology of micro-fibrillar cellulose aqueous suspensions. Cellulose 23, 2943–2953 (2016)

    Google Scholar 

Download references

Funding

This work was supported by The Coordination of Superior Level Staff Improvement, CAPES (Grant Number 1751838), the São Paulo Research Foundation, FAPESP (Grant Numbers 2010/17804-7, 2011/00156-5) and the National Council for Scientific and Technological Development, CNPq (Grant Number 310410/2010-0).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronaldo Gonçalves dos Santos or Márcia A. Silva Spinacé.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, L.S., dos Santos, R.G. & Spinacé, M.A.S. Properties of Cellulose Nanofibers Extracted from Eucalyptus and their Emulsifying Role in the Oil-in-Water Pickering Emulsions. Waste Biomass Valor 13, 689–705 (2022). https://doi.org/10.1007/s12649-021-01498-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01498-8

Keyword

Navigation