Skip to main content
Log in

Foodomics technology: promising analytical methods of functional activities of plant polyphenols

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Polyphenol compounds are widely found in natural plants and they are attracting a lot of interests in their functional activities including anti-cancer, anti-inflammatory, liver-protection, anti-bacteria, neuroprotection, anti-obesity, and other related effects. However, the mechanisms of polyphenolic functional activities are still limited. Although chemical reagent methods have been widely used to study various polyphenol activities, it is difficult to deeply investigate the specific mechanism of polyphenol activities in vivo only by chemical methods. Recently, as a method to discover biomarkers associated with polyphenol activities, foodomics technique including proteomics, metabolomics, genomics, transcriptomics and lipidomics technique was developed to study the mechanisms. In this review, we summarized the worldwide research advances of polyphenolic functional activities using foodomics techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Monika GD, Paulina P, Francesco C, Alicja KJ, Antonella MG, Narcyz K, Michal W, Magdalena GP (2018) Potential health benefits of olive oil and plant polyphenols. Int J Mol Sci 19:686

    Article  CAS  Google Scholar 

  2. Torsten B (2014) Dietary factors affecting polyphenol bioavailability. Nutr Rev 72:429–452

    Article  Google Scholar 

  3. Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18:1818–1892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Siddiq M, Dolan KD (2017) Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.). Food Chem 218:216–220

    Article  CAS  PubMed  Google Scholar 

  5. Ameer K, Shahbaz HM, Kwon JH (2017) Green extraction methods for polyphenols from plant matrices and their byproducts: a review. Compr Rev Food Sci Food Saf 16:295–315

    Article  PubMed  Google Scholar 

  6. Khalifa I, Zhu W, Li K, Li C (2018) Polyphenols of mulberry fruits as multifaceted compounds: Compositions, metabolism, health benefits, and stability—a structural review. J Funct Foods 40:28–43

    Article  CAS  Google Scholar 

  7. Bahadoran Z, Mirmiran P, Azizi F (2013) Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord 12:43–43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chan CL, Gan RY, Shah NP, Corke H (2018) Polyphenols from selected dietary spices and medicinal herbs differentially affect common food-borne pathogenic bacteria and lactic acid bacteria. Food Control 92:437–443

    Article  CAS  Google Scholar 

  9. Giuseppe G (2018) Effects of polyphenol-rich foods on human health. Nutrients 10:1089

    Article  CAS  Google Scholar 

  10. Rahaiee S, Moini S, Hashemi M, Shojaosadati SA (2015) Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): a review. J Of Food Sci Technol Mysore 52:1881–1888

    Article  CAS  Google Scholar 

  11. Shao P, Zhang Z, Wang L, Peng BZ, Feng W (2018) Effects of swelling agent treatment on the polyphenol content and antioxidant activity of kiwifruit. Mod Food Sci Technol 34:32–40

    Google Scholar 

  12. Kang I, Espín JC, Carr TP, Tomás-Barberán FA, Chung S (2016) Raspberry seed flour attenuates high-sucrose diet-mediated hepatic stress and adipose tissue inflammation. J Nutr Biochem 32:64–72

    Article  CAS  PubMed  Google Scholar 

  13. Angeles Nunez-Sanchez M, Karmokar A, Gonzalez-Sarrias A, Garcia-Villalba R, Tomas-Barberan FA, Teresa Garcia-Conesa M, Brown K, Carlos Espin J (2016) In vivorelevant mixed urolithins and ellagic acid inhibit phenotypic and molecular colon cancer stem cell features: a new potentiality for ellagitannin metabolites against cancer. Food Chem Toxicol 92:8–16

    Article  CAS  Google Scholar 

  14. Mondello L (2014) Foodomics-advanced mass spectrometry in modern food science and nutrition Alejandro cifuentes. J Sep Sci 36:1869–1869

    Article  CAS  Google Scholar 

  15. Braconi D, Bernardini G, Millucci L, Santucci A (2018) Foodomics for human health: current status and perspectives. Expert Rev Proteomics 15:153–164

    Article  CAS  PubMed  Google Scholar 

  16. Ferri E, Galimberti A, Casiraghi M, Airoldi C, Ciaramelli C, Palmioli A, Mezzasalma V, Bruni I, Labra M (2015) Towards a universal approach based on omics technologies for the quality control of food. Biomed Res Int 2015:1–14

    Article  CAS  Google Scholar 

  17. Bernillon S, Biais B, Deborde C, Maucourt M, Cabasson C, Gibon Y, Hansen TH, Husted S, de Vos RCH, Mumm R, Jonker H, Ward JL, Miller SJ, Baker JM, Burger J, Tadmor YA, Beale MH, Schjoerring JK, Schaffer AA, Rolin D, Hall RD, Moing A (2013) Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics 9:57–77

    Article  CAS  Google Scholar 

  18. Donno D, Cerutti AK, Prgomet I, Mellano MG, Beccaro GL (2015) Foodomics for mulberry fruit (Morus spp.): analytical fingerprint as antioxidants’ and health properties’ determination tool. Food Res Int 69:179–188

    Article  CAS  Google Scholar 

  19. Lopez-Sanchez P, de Vos RCH, Jonker HH, Mumm R, Hall RD, Bialek L, Leenman R, Strassburg K, Vreeken R, Hankemeier T, Schumm S, van Duynhoven J (2015) Comprehensive metabolomics to evaluate the impact of industrial processing on the phytochemical composition of vegetable purees. Food Chem 168:348–355

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Villalba R, Tomas-Barberan FA, Fanca-Berthon P, Roller M, Zafrilla P, Issaly N, Garcia-Conesa MT (2015) Targeted and untargeted metabolomics to explore the bioavailability of the secoiridoids from a seed/fruit extract (Fraxinus angustifolia Vahl) in human healthy volunteers: a preliminary study. Molecules 20:22202–22219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kussmann M, Raymond F, Affolter M (2006) OMICS-driven biomarker discovery in nutrition and health. J Biotechnol 124:758–787

    Article  CAS  PubMed  Google Scholar 

  22. Andjelkovic U, Gajdosik MS, Gaso-Sokac D, Martinovic T, Josic D (2017) Foodomics and food safety: where we are. Food Technol Biotechnol 55:290–307

    Article  PubMed  PubMed Central  Google Scholar 

  23. Capozzi F, Bordoni A (2013) Foodomics: a new comprehensive approach to food and nutrition. Genes Nutr 8:1–4

    Article  CAS  PubMed  Google Scholar 

  24. Garcia-Canas V, Simo C, Herrero M, Ibanez E, Cifuentes A (2012) Present and future challenges in food analysis: foodomics. Anal Chem 84:10150–10159

    Article  CAS  PubMed  Google Scholar 

  25. Hoffmann-Sommergruber K (2016) Proteomics and its impact on food allergy diagnosis. EuPA Open Proteom 12:10–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Valdes A, Cifuentes A, Leon C (2017) Foodomics evaluation of bioactive compounds in foods. Trac Trends Anal Chem 96:2–13

    Article  CAS  Google Scholar 

  27. Abu-Reidah IM, Contreras MM, Arráez-Román D, Segura-Carretero A, Fernández-Gutiérrez A (2013) Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. J Chromatogr A 1313:212–227

    Article  CAS  PubMed  Google Scholar 

  28. van Dorsten FA, Grun CH, van Velzen EJJ, Jacobs DM, Draijer R, van Duynhoven JPM (2010) The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. Mol Nutr Food Res 54:897–908

    Article  PubMed  CAS  Google Scholar 

  29. Barnes S (2008) Nutritional genomics, polyphenols, diets, and their impact on dietetics. J Am Diet Assoc 108:1888–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Logan CA, Buckley BA (2015) Transcriptomic responses to environmental temperature in eurythermal and stenothermal fishes. J Exp Biol 218:1915–1924

    Article  PubMed  Google Scholar 

  31. Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44:1071–1079

    Article  CAS  PubMed  Google Scholar 

  32. Lee PY, Saraygord-Afshari N, Low TY (2020) The evolution of two-dimensional gel electrophoresis—from proteomics to emerging alternative applications. J Chromatogr A 1615:460763

    Article  CAS  PubMed  Google Scholar 

  33. Pomastowski P, Buszewski B (2014) Two-dimensional gel electrophoresis in the light of new developments. Trends Anal Chem 53:167–177

    Article  CAS  Google Scholar 

  34. Gillet LC, Leitner A, Aebersold R (2016) In: Bohn PW, Pemberton JE (eds) Annual review of analytical chemistry, vol 9, pp 449–472. ACS, Washington

  35. Andjelkovic U, Josic D (2018) Mass spectrometry based proteomics as foodomics tool in research and assurance of food quality and safety. Trends Food Sci Technol 77:100–119

    Article  CAS  Google Scholar 

  36. Cunsolo V, Muccilli V, Saletti R, Foti S (2014) Mass spectrometry in food proteomics: a tutorial. J Mass Spectrom 49:768–784

    Article  CAS  PubMed  Google Scholar 

  37. Yu-Huan C, Jing LI, Ya-Wei F, Ze-Yuan D (2014) Lipidomics and its application in nutrition and health research. Food ence 35:272–276

    Google Scholar 

  38. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    Article  CAS  PubMed  Google Scholar 

  39. Arena S, Salzano AM, Scaloni A (2016) Identification of protein markers for the occurrence of defrosted material in milk through a MALDI-TOF-MS profiling approach. J Proteom 147:56–65

    Article  CAS  Google Scholar 

  40. Yan X, Xiang P, Zhao Y, Yu Z, Yan H (2020) Determination of 5-MeO-DIPT in human urine using gas chromatography coupled with high-resolution Orbitrap mass spectrometry. J Anal Toxicol 44:461–469

    Article  CAS  PubMed  Google Scholar 

  41. Diaz R, Pozo OJ, Sancho JV, Hernandez F (2014) Metabolomic approaches for orange origin discrimination by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chem 157:84–93

    Article  CAS  PubMed  Google Scholar 

  42. Reo NV (2018) NMR-based metabolomics. Drug Chem Toxicol 25:375

    Article  CAS  Google Scholar 

  43. Arun KB, Madhavan A, Reshmitha TR, Thomas S, Nisha P (2018) Musa paradisiaca inflorescence induces human colon cancer cell death by modulating cascades of transcriptional events. Food Funct 9:511–524

    Article  CAS  Google Scholar 

  44. Bonuccelli G, Sotgia F, Lisanti MP (2018) Matcha green tea (MGT) inhibits the propagation of cancer stem cells (CSCs), by targeting mitochondrial metabolism, glycolysis and multiple cell signalling pathways. Aging 10:1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Valdes A, Artemenko KA, Bergquist J, Garcia-Canas V, Cifuentes A (2016) Comprehensive proteomic study of the antiproliferative activity of a polyphenol-enriched rosemary extract on colon cancer cells using nanoliquid chromatography-orbitrap MS/MS. J Proteome Res 15:1971–1985

    Article  CAS  PubMed  Google Scholar 

  46. de Roos B, Zhang X, Rodriguez Gutierrez G, Wood S, Rucklidge GJ, Reid MD, Duncan GJ, Cantlay GJ, Duthie GG, O’Kennedy N (2011) Anti-platelet effects of olive oil extract: in vitro functional and proteomic studies. Eur J Nutr 50:553–562

    Article  CAS  PubMed  Google Scholar 

  47. Bucio-Noble D, Kautto L, Krisp C, Ball MS, Molloy MP (2018) Polyphenol extracts from dried sugarcane inhibit inflammatory mediators in an in vitro colon cancer model. J Proteom 177:1–10

    Article  CAS  Google Scholar 

  48. Shao B, Tang M, Li Z, Zhou R, Deng Y, Nie C, Yuan Z, Zhou L, Tang M, Tong A (2012) Proteomics analysis of human umbilical vein endothelial cells treated with resveratrol. Amino Acids 43:1671–1678

    Article  CAS  PubMed  Google Scholar 

  49. Morales-Prieto N, de Lerma NL, Pacheco IL, Pérez J, Peinado RA, Abril N (2017) Redox proteomics reveals the hepatoprotective effect of must from Pedro Ximenez dried grapes in aged Mus spretus mice. J Funct Foods 34:89–97

    Article  CAS  Google Scholar 

  50. Liu Z, Li Q, Huang J, Liang Q, Yan Y, Lin H, Xiao W, Lin Y, Zhang S, Tan B (2013) Proteomic analysis of the inhibitory effect of epigallocatechin gallate on lipid accumulation in human HepG2 cells. Proteome Sci 11:32–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yi S, Wang W, Bai F, Zhu J, Li J, Li X, Xu Y, Sun T, He Y (2013) Antimicrobial effect and membrane-active mechanism of tea polyphenols against Serratia marcescens. World J Microbiol Biotechnol 30:451–460

    Article  PubMed  CAS  Google Scholar 

  52. Wang J, Bai X, Ding X, Bai S, Zeng Q, Mao X, Zhang K (2017) Quantitative proteomic analysis reveals the role of tea polyphenol EGCG in egg whites in response to vanadium stress. Nutrition 20:39–40

    CAS  Google Scholar 

  53. Zhang Z, Li G, Szeto SS, Chong CM, Quan Q, Huang C, Cui W, Guo B, Wang Y, Han Y, Siu KM (2015) Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med 84:331–343

    Article  CAS  PubMed  Google Scholar 

  54. Mol HGJ, Tienstra M, Zomer P (2016) Evaluation of gas chromatography—electron ionization—full scan high resolution Orbitrap mass spectrometry for pesticide residue analysis. Anal Chim Acta 935:161–172

    Article  CAS  PubMed  Google Scholar 

  55. Jin MJ, Jin C, Kim JY, In MK, Kwon OS, Yoo HH (2011) A quantitative method for simultaneous determination of 5-Methoxy-N, N-diisopropyltryptamine and its metabolites in urine using liquid chromatography-electrospray ionization-tandem mass spectrometry. J Forensic Sci 56:1044–1048

    Article  CAS  PubMed  Google Scholar 

  56. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu H, Tayyari F, Khoo C, Gu L (2015) A 1H NMR-based approach to investigate metabolomic differences in the plasma and urine of young women after cranberry juice or apple juice consumption. J Funct Foods 14:76–86

    Article  CAS  Google Scholar 

  58. Xie G, Zhao A, Zhao L, Chen T, Chen H, Qi X, Zheng X, Ni Y, Cheng Y, Lan K, Yao C, Qiu M, Jia W (2012) Metabolic fate of tea polyphenols in humans. J Proteome Res 11:3449–3457

    Article  CAS  PubMed  Google Scholar 

  59. de Moraes Barros HR, Garcia-Villalba R, Tomas-Barberan FA, Genovese MI (2016) Evaluation of the distribution and metabolism of polyphenols derived from cupuassu (Theobroma grandiflorum) in mice gastrointestinal tract by UPLC-ESI-QTOF. J Funct Foods 22:477–489

    Article  CAS  Google Scholar 

  60. Fu C, Wang T, Wang Y, Chen X, Jiao J, Ma F, Zhong M, Bi K (2011) Metabonomics study of the protective effects of green tea polyphenols on aging rats induced by d-galactose. J Pharm Biomed Anal 55:1067–1074

    Article  CAS  PubMed  Google Scholar 

  61. Dall’Acqua S, Stocchero M, Clauser M, Boschiero I, Ndoum E, Schiavon M, Mammi S, Schievano E (2014) Changes in urinary metabolic profile after oral administration of curcuma extract in rats. J Pharm Biomed Anal 100:348–356

    Article  PubMed  CAS  Google Scholar 

  62. Garcia-Villalba R, Larrosa M, Possemiers S, Tomas-Barberan FA, Espin JC (2014) Bioavailability of phenolics from an oleuropein-rich olive (Olea europaea) leaf extract and its acute effect on plasma antioxidant status: comparison between pre- and postmenopausal women. Eur J Nutr 53:1015–1027

    Article  CAS  PubMed  Google Scholar 

  63. Qiu P, Sun J, Man S, Yang H, Ma L, Yu P, Gao W (2017) Curcumin attenuates N-nitrosodiethylamine-induced liver injury in mice by utilizing the method of metabonomics. J Agric Food Chem 65:2000–2007

    Article  CAS  PubMed  Google Scholar 

  64. Pan P, Skaer CW, Stirdivant SM, Young MR, Stoner GD, Lechner JF, Huang YW, Wang LS (2015) Beneficial regulation of metabolic profiles by black raspberries in human colorectal cancer patients. Cancer Prev Res 8:743–750

    Article  CAS  Google Scholar 

  65. Ma WN, Zhou MM, Gou XJ, Zhao L, Cen F, Xu Y, Shen HY (2018) Urinary metabolomic study of chlorogenic acid in a rat model of chronic sleep deprivation using gas chromatography-mass spectrometry. Int J Genom. https://doi.org/10.1016/j.freeradbiomed.2015.02.030

    Article  Google Scholar 

  66. Zhang YB, Zhang WY, Wang ZJ, Na XL, Wang C (2018) Biomarker identification of maternal genistein exposure induced obesity by metabonomics analysis. Biol Pharm Bull 41(10):1581–1585

    Article  CAS  PubMed  Google Scholar 

  67. SunY CS, Wei R, Xie X, Wang C, Fan S, Zhang X, Su J, Liu J, Jia W, Wang X (2018) Metabolome and gut microbiota variation with long-term intake of Panax ginseng extracts on rats. Food Funct 9:3547–3556

    Article  Google Scholar 

  68. Liu YR, Xiao BK, Yang JY, Guo CH, Shen SJ, Tang ZS, Dong JX, Huang RQ (2015) H-1-NMR and HPLC-MS/MS-based global/targeted metabolomic evaluation of Hypericum perforatum L. intervention for menopause. J Funct Foods 17:722–741

    Article  CAS  Google Scholar 

  69. Kaushik P, Andujar I, Vilanova S, Plazas M, Gramazio P, Javier Herraiz F, Brar NS, Prohens J (2015) Breeding vegetables with increased content in bioactive phenolic acids. Molecules 20:18464–18481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Harding JCS (2015) Genomics, animal models, and emerging diseases: relevance to One Health and food security. Genome 58:499–502

    Article  PubMed  Google Scholar 

  71. Luceri C, Bigagli E, Pitozzi V, Giovannelli L (2017) A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. Eur J Nutr 56:865–877

    Article  CAS  PubMed  Google Scholar 

  72. Konstantinidou V, Covas MI, Munoz-Aguayo D, Khymenets O, de la Torre R, Saez G, del Carmen TM, Toledo E, Marti A, Ruiz-Gutierrez V, Ruiz Mendez MV, Fito M (2010) In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: a randomized controlled trial. FASEB J 24:2546–2557

    Article  CAS  PubMed  Google Scholar 

  73. Ansel A, Rosenzweig JP, Zisman PD, Melamed M, Gesundheit B (2017) Variation in gene express ion in autism spectrum disorders: an extensive review of transcriptomic studies. Front Neurosci 10:601

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gallo M, Ferranti P (2016) The evolution of analytical chemistry methods in foodomics. J Chromatogr A 1428:3–15

    Article  CAS  PubMed  Google Scholar 

  75. Pan J, Zhang Q, Xiong D, Vedell P, Yan Y, Jiang H, Cui P, Ding F, Tichelaar JW, Wang Y, Lubet RA, You M (2014) Transcriptomic analysis by RNA-Seq reveals AP-1 pathway as key regulator that green tea may rely on to inhibit lung tumorigenesis. Mol Carcinog 53:19–29

    Article  CAS  PubMed  Google Scholar 

  76. Midttun HLE, Ramsay A, Mueller-Harvey I, Williams AR (2018) Cocoa procyanidins modulate transcriptional pathways linked to inflammation and metabolism in human dendritic cells. Food Funct 9:2883–2890

    Article  CAS  PubMed  Google Scholar 

  77. Hu T, Lan JL (2017) Mass-spectrometry-based lipidomics. J Sep Sci 41:1

    Google Scholar 

  78. Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11:593–598

    Article  CAS  PubMed  Google Scholar 

  79. Puupponen-Pimia R, Seppanen-Laakso T, Kankainen M, Maukonen J, Torronen R, Kolehmainen M, Leppanen T, Moilanen E, Nohynek L, Aura AM, Poutanen K, Tomas-Barberan FA, Espin JC, Oksman-Caldentey KM (2013) Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Mol Nutr Food Res 57:2258–2263

    Article  PubMed  CAS  Google Scholar 

  80. Alejandra Garcia-Flores L, Medina S, Gomez C, Wheelock CE, Cejuela R, Miguel Martinez-Sanz J, Oger C, Galano JM, Durand T, Hernandez-Saez A, Ferreres F, Gil-Izquierdo A (2018) Aronia-citrus juice (polyphenol-rich juice) intake and elite triathlon training: a lipidomic approach using representative oxylipins in urine. Food Funct 9:463–475

    Article  Google Scholar 

  81. Hashiguchi A, Hitachi K, Zhu W, Tian J, Tsuchida K, Komatsu S (2017) Mung bean (Vigna radiata (L.)) coat extract modulates macrophage functions to enhance antigen presentation: A proteomic study. J Proteom 161:26–37

    Article  CAS  Google Scholar 

  82. Gessner DK, Winkler A, Koch C, Dusel G, Liebisch G, Ringseis R, Eder K (2017) Analysis of hepatic transcript profile and plasma lipid profile in early lactating dairy cows fed grape seed and grape marc meal extract. BMC Genom 18:253

    Article  CAS  Google Scholar 

  83. Ibanez C, Valdes A, Garcia-Canas V, Simo C, Celebier M, Rocamora-Reverte L, Gomez-Martinez A, Herrero M, Castro-Puyana M, Segura-Carretero A, Ibanez E, Ferragut JA, Cifuentes A (2012) Global Foodomics strategy to investigate the health benefits of dietary constituents. J Chromatogr A 1248:139–153

    Article  CAS  PubMed  Google Scholar 

  84. Huang J, Feng S, Liu A, Dai Z, Wang H, Reuhl K, Lu W, Yang CS (2018) Green tea polyphenol EGCG alleviates metabolic abnormality and fatty liver by decreasing bile acid and lipid absorption in mice. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201700696

    Article  PubMed  PubMed Central  Google Scholar 

  85. Quifer-Rada P, Choy YY, Calvert CC, Waterhouse AL, Lamuela-Raventos RM (2016) Use of metabolomics and lipidomics to evaluate the hypocholestreolemic effect of proanthocyanidins from grape seed in a pig model. Mol Nutr Food Res 60:2219–2227

    Article  CAS  PubMed  Google Scholar 

  86. Zhou M, Wang S, Zhao A, Wang K, Fan Z, Yang H, Liao W, Bao S, Zhao L, Zhang Y, Yang Y, Qiu Y, Xie G, Li H, Jia W (2012) Transcriptomic and metabonomic profiling reveal synergistic effects of quercetin and resveratrol supplementation in high fat diet fed mice. J Proteome Res 11:4961–4971

    Article  CAS  PubMed  Google Scholar 

  87. Gonzalez-Sarrias A, Garcia-Villalba R, Romo-Vaquero M, Alasalvar C, Orem A, Zafrilla P, Tomas-Barberan FA, Selma MV, Carlos Espin J (2017) Clustering according to urolithin metabotype explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate: a randomized clinical trial. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201600830

    Article  PubMed  Google Scholar 

  88. Schilling B, Mac LB, Held JM et al (2015) Multiplexed, scheduled, high-resolution parallel reaction monitoring on a full scan QqTOF instrument with integrated data-dependent and targeted mass spectrometric workflows. Anal Chem 87:10222–10229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Uchida Y, Sasaki H, Terasaki T (2020) Establishment and validation of highly accurate formalin-fixed paraffin-embedded quantitative proteomics by heat-compatible pressure cycling technology using phase-transfer surfactant and SWATH-MS. Sci Rep 10:11271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Tsou CC, Avtonomov D, Larsen B, Tucholska M, Choi H, Gingras AC, Nesvizhskii AI (2015) Dia-umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods 12:258–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Guo T, Kouvonen P, Koh CC (2015) Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nat Medic 21:407–413

    Article  CAS  Google Scholar 

  92. Quan J, Kang Y, Li L (2020) Proteome analysis of rainbow trout (Oncorhynchus mykiss) liver responses to chronic heat stress using DIA/SWATH. J Proteom 233:104079

    Article  CAS  Google Scholar 

  93. Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, Xu X, Lv X, Hugnot JP, Tanay A (2017) Multiscale 3D genome rewiring during mouse neural development. Cell 171:557–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yan Z, Guoliang L (2020) Advances in technologies for 3D genomics research. Sci China Life Sci. https://doi.org/10.1007/s11427-019-1704-2

    Article  PubMed  PubMed Central  Google Scholar 

  95. Da L, Ping H, Siheng Z, Weize X, Muhammad J, Keji Y, Yingying L, Liang L, Yijun R, Zhen FF, Guoliang L, Gang C (2018) Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture. Nat Genet 50:754–763

    Article  CAS  Google Scholar 

  96. Honglong H, Jingjing L, Wenhua Z, Tianyu W, Ning Z, Yie HL, Haitao L (2019) Functional metabolomics decipher biochemical functions and associated mechanisms underlie small-molecule metabolism. Mass Spectrom Rev 39:417–433

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (Grant No. 31701604), Scientific Research Foundation of Wuhan Institute of Technology (Grant No. k201633), the Key Program of Hubei Provincial Department of Education (Grant No. D20171501), Graduate Innovative Fund of Wuhan Institute of Technology (Grant No. CX2020354).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cunwen Wang or Tielin Wang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Compliance with Ethics requirements

This article does not contain any studies with human or animal subject.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Xie, C., Li, J. et al. Foodomics technology: promising analytical methods of functional activities of plant polyphenols. Eur Food Res Technol 247, 2129–2142 (2021). https://doi.org/10.1007/s00217-021-03781-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03781-3

Keywords

Navigation