Skip to main content

Advertisement

Log in

Catechin as the Most Efficient Bioactive Compound from Azadirachta indica with Antibiofilm and Anti-quorum Sensing Activities Against Dental Biofilm: an In Vitro and In Silico Study

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Neem (Azadirachta indica [AI]) is a unique and traditional source of antioxidant and antibacterial compounds. The GC-MS studies revealed that phytoextract of Azadirachta indica comprises a large number of phytocompounds that possess the efficacy of inhibiting the biofilm. It was observed that phytocompounds like catechin showed maximum eradication of biofilm along with the degradation of EPS structural components like carbohydrates and proteins compared to quercetin, nimbolide, nimbin, and azardirachtin, and hence, catechin was proved to be the best against dental plaque-forming bacteria. It was also observed that catechin was able to bring about a marked reduction in quorum sensing (QS) both in Alcaligenes faecalis and Pseudomonas gingivalis dental biofilm-forming strains. The extent of such reduction was maximum for catechin (94.56±2.56% in P. gingivalis & 96.56±2.5 in A. faecalis) in comparison to other bioactive compounds. It was further observed that the bioactive compounds possess the ability to quickly pass across the membrane and bring about inhibition in the DNA and RNA content of the sessile cells. This was further validated by microscopic and in silico studies. Thus, this study revealed that catechin obtained from the phytoextract of AI showed a marked ability to inhibit the dental biofilm and can be used as a natural drug-like compound in treating biofilm-associated chronic infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data have been generated as part of the routine work.

References

  1. Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881–890.

    Article  Google Scholar 

  2. van Steenbergen, T. J. M., van Winkelhoff, A. J., & de Graaff, J. (1984). Pathogenic synergy: mixed infections in the oral cavity. Antonie Van Leeuwenhoek, 50(5-6), 789–798.

    Article  Google Scholar 

  3. Gilbert, P., Maira-Litran, T., McBain, A. J., Rickard, A. H., & Whyte, F. W. (2002). The physiology and collective recalcitrance of microbial biofilm communities. Advances in Microbial Physiology, 46, 203–255.

    Article  CAS  Google Scholar 

  4. Socransky, S. S., & Haffajee, A. D. (2002). Dental biofilms: difficult therapeutic targets. Periodontology, 28, 12–55.

    Article  Google Scholar 

  5. Marsh, P. D. (2004). Dental plaque as a microbial biofilm. Caries Research, 38, 204–211.

    Article  CAS  Google Scholar 

  6. How, K. Y., Song, K. P., & Chan, K. G. (2016). Porphyromonas gingivalis: an overview of periodontopathic pathogen below the gum line. Frontiers in Microbiology, 7, 53.

    Article  Google Scholar 

  7. Tena, D., Fernández, C., & Lago, M. R. (2015). Alcaligenes faecalis: an unusual cause of skin and soft tissue infection. Japanese Journal of Infectious Diseases, 68(2), 128–130.

    Article  CAS  Google Scholar 

  8. Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1), 522–554.

    Article  CAS  Google Scholar 

  9. Alzohairy, M. A. (2016). Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evidence-based Complementary and Alternative Medicine, 2016, 7382506.

    Article  Google Scholar 

  10. Harjai, K., Bala, A., Gupta, R. K., & Sharma, R. (2013). Leaf extract of Azadirachta indica (neem): a potential antibiofilm agent for Pseudomonas aeruginosa. Pathogens and Disease, 69(1), 62–65.

    CAS  PubMed  Google Scholar 

  11. Mani, A., & Mahalingam, G. (2017). Effect of anti-biofilm potential of different medicinal plants: review. Asian Journal of Pharmaceutical and Clinical Research, 10(2), 24–32.

    Article  Google Scholar 

  12. Jahan, M., Abuhena, M., Azad, A. K., & Karim, M. M. (2018). In vitro antibacterial and antibiofilm activity of selected medicinal plants and spices extracts against multidrug resistant Pseudomonas aeruginosa. Journal of Pharmacognosy and Phytochemistry, 7(3), 2114–2121.

    CAS  Google Scholar 

  13. Lahiri, D., Nag, M., Dutta, B., Dash, S., Ghosh, S., & Ray, R. (2021). Synergistic effect of quercetin with allicin from the ethanolic extract of Allium cepa as a potent antiquorum sensing and anti-biofilm agent against oral biofilm. In D. Ramkrishna, S. Sengupta, S. Dey Bandyopadhyay, & A. Ghosh (Eds.), Advances in Bioprocess Engineering and Technology. Lecture Notes in Bioengineering. Singapore: Springer.

    Google Scholar 

  14. Yam, T. S., Hamilton-Miller, J. M. T., & Shah, S. (1998). The effect of a component of tea (Camellia sinensis) on methicillin resistance, PBP20 synthesis, and β-lactamase production in Staphylococcus aureus. The Journal of Antimicrobial Chemotherapy, 42(2), 211–216.

    Article  CAS  Google Scholar 

  15. Asahi, Y., Noiri, Y., Miura, J., Maezono, H., Yamaguchi, M., Yamamoto, R., Azakami, H., Hayashi, M., & Ebisu, S. (2014). Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms. Journal of Applied Microbiology, 116, 1164–1171.

    Article  CAS  Google Scholar 

  16. Vidigal, P. G., Musken, M., Becker, K. A., Haussler, S., Wingender, J., Steinmann, E., Kehrmann, J., Gulbins, E., Buer, J., Rath, P. M., & Steinmann, J. (2014). Effects of green tea compound epigallocatechin-3-gallate against Stenotrophomonas maltophilia infection and biofilm. PLoS One, 9(4), e92876.

    Article  Google Scholar 

  17. Taylor, P. W., Hamilton-Miller, J. M. T., & Stapleton, P. D. (2005). Antimicrobial properties of green tea catechins. Food Science and Technology Bulletin, 2(7), 71–81. https://doi.org/10.1616/1476-2137.14184.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Reto, M., Figueira, M. E., Filipe, H. M., & Almeida, C. M. (2007). Chemical composition of green tea (Camellia sinensis) infusions commercialized in Portugal. Plant Foods for Human Nutrition, 62(4), 139–144.

    Article  CAS  Google Scholar 

  19. Quave, C. L., Estévez-Carmona, M., & Compadre, C. M. (2012). Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLoS One, 7(1), e28737. https://doi.org/10.1371/journal.pone.0028737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeyaseelan, E. C., & Jashothan, P. T. (2012). In vitro control of Staphylococcus aureus (NCTC 6571) and Escherichia coli (ATCC 25922) by Ricinus communis L. Asian Pacific Journal of Tropical Biomedicine, 2(9), 717–721. https://doi.org/10.1016/S2221-1691(12)60216-0.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kanthal, L. K., Dey, A., Satyavathi, K., & Bhojaraju, P. (2014). GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC. Pharmacognosy Research, 6(1), 58–61.

    Article  Google Scholar 

  22. Baishya, R., Bhattacharya, A., Mukherjee, M., Lahiri, D., & Banerjee, S. (2016). Establishment of a simple reproducible model for antibiotic sensitivity pattern study of biofilm forming Staphylococcus aureus. Materials Today: Proceedings, 3(10), 3461–3466. https://doi.org/10.1016/j.matpr.2016.10.028.

    Article  Google Scholar 

  23. Yang, Y.-H., Lee, T.-H., Kim, J. H., Kim, E. J., Joo, H.-S., Lee, C.-S., & Kim, B.-G. (2006). High-throughput detection method of quorum-sensing molecules by colorimetry and its applications. Analytical Biochemistry, 356(2), 297299. https://doi.org/10.1016/j.ab.2006.05.030.

    Article  CAS  PubMed  Google Scholar 

  24. Ding, X., Peng, X. J., Jin, B. S., Xiao, M., Chen, J. K., Li, B., Fang, C. M., & Nie, M. (2015). Spatial distribution of bacterial communities driven by multiple environmental factors in a beach wetland of the largest freshwater lake in China. Frontiers in Microbiology, 6, 129.

    PubMed  PubMed Central  Google Scholar 

  25. Teanpaisan, R., Kawsud, P., Pahumunto, N., & Puripattanavong, J. (2016). Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms. Journal of Traditional and Complementary Medicine, 7(2), 172–177.

    Article  Google Scholar 

  26. Meade, H. M., Long, S. R., Ruvkun, C. B., Brown, S. E., & Ausubel, F. M. (1982). Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. Journal of Bacteriology, 149(1), 114–122.

    Article  CAS  Google Scholar 

  27. Deutscher, M. P.(1990). Methods in Enzymology. volume 182. A guide to protein purification. Academic Press.

  28. Brunk, C. F., Jones, K. C., & James, T. W. (1979). Assay for nanogram quantities of DNA in cellular homogenates. Analytical Biochemistry, 92(2), 497–500.

    Article  CAS  Google Scholar 

  29. Wang, Y., Xiao, J., Suzek TO, Zhang, J., Wang, J., & Bryant, S. H. (2009). PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Research, 37(Web Server issue), W623–W633. https://doi.org/10.1093/nar/gkp456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burgess, N. A., Kirke, D. F., Williams, P., Winzer, K., Hardie, K. R., Meyers, N. L., Aduse-Opoku, J., Curtis, M. A., & Cámara, M. (2002). LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. Microbiology (Reading), 148(Pt 3), 763–772.

    Article  CAS  Google Scholar 

  31. Hermann, T., & Westhof, E. (1998). RNA as a drug target: chemical, modelling, and evolutionary tools. Current Opinion in Biotechnology, 9(1), 66–73.

    Article  CAS  Google Scholar 

  32. Soler-Arango, J., Figoli, C., Muraca, G., Bosch, A., & Brelles-Mariño, G. (2019). The Pseudomonas aeruginosa biofilm matrix and cells are drastically impacted by gas discharge plasma treatment: A comprehensive model explaining plasma-mediated biofilm eradication. PLoS One, 14(6), e0216817.

    Article  CAS  Google Scholar 

  33. Lahiri, D., Dash, S., Dutta, R., & Nag, M. (2019). Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. Journal of Biosciences, 44(2), 52.

    Article  Google Scholar 

  34. Gerits, E., Verstraeten, N., & Michiels, J. (2017). New approaches to combat Porphyromonas gingivalis biofilms. Journal of Oral Microbiology, 9(1), 1300366.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dibyajit Lahiri isolated the bacterial strain and carried out other experimental procedures and helped to write the manuscript. Moupriya Nag conceived the study and revised experimental procedures and helped to write the manuscript. Indranil Mukherjee, Shreyasi Ghosh, Ankita Dey, and Ritwik Banerjee performed the experiment. Bandita Dutta carried out in silico studies. Rina Rani Ray designed the protocol, supervised the experimental procedures, and drafted the manuscript.

Corresponding author

Correspondence to Rina Rani Ray.

Ethics declarations

Ethics Approval and Consent to Participate

All work has been done under the guidelines of Institutional Ethics Committee MAKAUT: IEC-(18-19)/02 dated December 28, 2019. All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, D., Nag, M., Dutta, B. et al. Catechin as the Most Efficient Bioactive Compound from Azadirachta indica with Antibiofilm and Anti-quorum Sensing Activities Against Dental Biofilm: an In Vitro and In Silico Study. Appl Biochem Biotechnol 193, 1617–1630 (2021). https://doi.org/10.1007/s12010-021-03511-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03511-1

Keywords

Navigation