Skip to main content

Vanillin: Biosynthesis, Biotechnology, and Bioproduction

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Orchids Phytochemistry, Biology and Horticulture

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 154 Accesses

Abstract

Further understanding of Vanilla flavor compounds synthesis, in Vanilla plants, is lacking in literature. This can aid in better production of flavor compounds. Additionally, commercial importance of Vanilla pods can then be improved. Although vanillin amounts in pod, predominates among flavor compounds, the natural flavor is made of over 200 chemicals. Despite being low cost to produce, synthetic pure vanillin alone does not match the much sought complex notes of the natural product, used in products with high-quality attributes. This, despite the natural product being more than 200 times the price of the synthetic version, fungal biotransformation reactions of vanillin precursors yield “natural” vanillin. Endophytic fungi form symbiotic relationships with asymptomatic plants, where they produce secondary metabolites. In some cases, such metabolites were previously thought to be produced by the plant, but later revised to originate from the fungi. In this view, Vanilla flavor metabolites may be due to fungal participation, within the plant. Those fungi may either participate partially or completely, on the vanillin biosynthetic pathway, within the plant. This potential participation requires to be elucidated, to gain a better understanding of the still debatable vanillin biosynthesis, within the plant. The occurrence of different fungal endophyte species, across plant culture regions, may contribute to the observed terroir effect on pod flavor. The study of fungal endophytes within Vanilla plants, and their biosynthetic potential, is thus warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Firmenich (2017) Firmenich enriches Vanilla palette with sustainable and cost-effective natural tonalities. http://www.firmenich.com/en_INT/company/news/FIRMENICH-ENRICHES-VANILLA-PALETTE.html. Accessed 09 Sept 2017

  2. Givaudan (2016) Anything but Plain Vanilla. Givaudan Taste Essentials Vanilla. https://www.givaudan.com/flavours/world-flavours/tasteessentials/vanilla. Accessed 29 July 2016

  3. Ni J, Tao F, Du H, Xu P (2015) Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources. Sci Rep 5:13670. https://doi.org/10.1038/srep13670

    Article  PubMed  PubMed Central  Google Scholar 

  4. Perfumer and Flavorist (2014) Givaudan submits patent application for Vanilla fermentation process. http://www.perfumerflavorist.com/networking/news/company/Givaudan-Submits-Patent-Application-For-Vanilla-Fermentation-Process-238896611.html. Accessed 29 July 2016

  5. Kaur B, Chakraborty D (2013) Biotechnological and molecular approaches for vanillin production: a review. Appl Biochem Biotechnol 169:1353–1372

    Article  CAS  PubMed  Google Scholar 

  6. Hansen EH, Møller BL, Kock GR, Bünner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomycespombe) and Baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 75:2765–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zheng L, Zheng P, Sun Z, Bai Y, Wang J, Guo X (2007) Production of vanillin from waste residue of rice bran oil by Aspergillusniger and Pycnoporuscinnabarinus. Bioresour Technol 98:1115–1119

    Article  CAS  PubMed  Google Scholar 

  8. Lesage-Meessen L, Lomascolo A, Bonnin E, Thibault JF, Buleon A, Roller M, Asther M, Record E, Ceccaldi BC, Asther M (2002) A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran. Appl Biochem Biotechnol 103:141–153

    Article  Google Scholar 

  9. Thibault FJ, Asther M, Colonna-Ceccaldi B, Couteau D, Delattre M, Duarte JC, Craig F, Heldt-Hansen PH, Kroon PA, Lesage-Meessen L, Micard VC, Renard MT, Van Hulle S, Williamson G (1998) Fungal bioconversion of agricultural by-products to vanillin. Lebenson Wiss Technol 31:530–536

    Article  CAS  Google Scholar 

  10. Rasoanaivo P (1998) Essential oils of economic value in Madagascar: present state of knowledge. HerbalGram 43:31–59

    Google Scholar 

  11. Toms A, Wood JM (1970) Degradation of trans-ferulic acid by Pseudomonas acidovorans. Biochemist 9:337–343

    Article  CAS  Google Scholar 

  12. Sinha AK, Sharma UK, Sharma N (2008) A comprehensive review on Vanilla flavor: extraction, isolation and quantification of vanillin and others constituents. Int J Food Sci Nutr 59:299–326

    Article  CAS  PubMed  Google Scholar 

  13. Ranadive AS (2011) Quality control of Vanilla beans and extracts. In: Havkin-Frenkel D, Belanger FC (eds) Handbook of Vanilla science and technology. Wiley-Blackwell, Oxford, pp 141–160

    Google Scholar 

  14. Gleason-Allured J (2011) Vanilla: anything but plain. Perfumer and Flavorist. http://www.perfumerflavorist.com/flavor/application/vanilla/132347233.html. Accessed 30 July 2016

  15. Dunphy P, Bala K (2012a) The role of microorganisms in Vanilla curing. Part 1: evidence for microbial involvement. Perfum Flavor 37:24–29

    CAS  Google Scholar 

  16. Cameron KM (2011) Vanilla phylogeny and classification. In: Havkin-Frenkel D, Belanger FC (eds) Handbook of Vanilla science and technology. Wiley-Blackwell, Oxford, p 243

    Google Scholar 

  17. Alwahti AY (2003) A taste of Vanilla. The TED case studies. Number 686. http://www1.american.edu/TED/vanilla.htm. Accessed 30 July 2016

  18. Hoffman PG, Zapf CM (2011) Flavor, quality, and authentication. In: Havkin-Frenkel D, Belanger FC (eds) Handbook of Vanilla science and technology. Wiley-Blackwell, Oxford, pp 162–179

    Google Scholar 

  19. Kennedy CR (2015) The flavor rundown: natural vs. artificial flavors: What’s in a flavor? Harvard University. http://sitn.hms.harvard.edu/flash/2015/the-flavor-rundown-natural-vs-artificial-flavors/. Accessed 29 July 2016

  20. Zhang S, Mueller C (2012) Comparative analysis of volatiles in traditionally cured Bourbon and Ugandan Vanilla bean (Vanilla planifolia) extracts. J Agric Food Chem 60:10433–10444

    Article  CAS  PubMed  Google Scholar 

  21. Toth S, Lee KJ, Havkin-Frenkel D, Belanger FC, Hartman TG (2011) Volatile compounds in Vanilla. In: Havkin-Frenkel D, Belanger FC (eds) Handbook of Vanilla science and technology. Wiley-Blackwell, Oxford, pp 183–218

    Google Scholar 

  22. Sigma-Aldrich (2014) Ingredients catalog. Flavour Frag J

    Google Scholar 

  23. Burdock GA (2010) Fenaroli’s handbook of flavor ingredients, 6th edn. CRC Press, New York

    Google Scholar 

  24. Dignum M, Kerler J, Verpoorte R (2001) Vanilla production: technological, chemical and biosynthetic aspects. Int Food Res J 17:199–219

    CAS  Google Scholar 

  25. Dignum MJW, Kerler J, Verpoorte R (2002) Vanilla curing under laboratory conditions. Food Chem 79:165–171

    Article  CAS  Google Scholar 

  26. Royal Society of Chemistry (2016) Chemistry in its element – vanillin. http://www.rsc.org/chemistryworld/podcast/CIIEcompounds/transcripts/vanillin.asp. Accessed 29 July 2016

  27. Labuda I (2011) Biotechnology of vanillin: vanillin from microbial sources. In: Havkin-Frenkel D, Belanger FC (eds) Handbook of Vanilla science and technology. Wiley-Blackwell, Oxford, pp 301–327

    Google Scholar 

  28. Dionisio AP, Molina G, Carvalho DS, Pastore GM (2012) Natural flavourings from biotechnology for foods and beverages. In: Baines D, Seal R (eds) Natural food additives, ingredients and flavourings. Woodhead Publishing, Cambridge, pp 231–259

    Chapter  Google Scholar 

  29. Gimenez C, Cabrera R, Reina M, Gonzalez-Coloma A (2007) Fungal endophytes and their role in plant protection. Curr Org Chem 11:707–720

    Article  CAS  Google Scholar 

  30. Kucht S, Groß J, Hussein Y, Grothe T, Keller U, Basar S, König W, Steiner U, Leistner E (2004) Elimination of ergoline alkaloids following treatment of Ipomoea asarifolia (Convolvulaceae) with fungicides. Planta 219:619–625

    Article  CAS  PubMed  Google Scholar 

  31. Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, O'Sullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, Güldener U, Harris DR, Hollin W, Jaromczyk J, Johnson RD, Khan AK, Leistner E, Leuchtmann A, Li C, Liu J, Liu J, Liu M, Mace W, Machado C, Nagabhyru P, Pan J, Schmid J, Sugawara K, Steiner U, Takach JE, Tanaka E, Webb JS, Wilson EV, Wiseman JL, Yoshida R, Zeng Z (2013) Plant-symbiotic Fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9:e1003323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Steiner U, Hellwig S, Leistner E (2008) Specificity in the interaction between an epibioticclavicipitalean fungus and its convolvulaceous host in a fungus/plant symbiotum. Plant Signal Behav 3:704–706

    Article  PubMed  PubMed Central  Google Scholar 

  33. Steiner U, Leibner S, Schardl CL, Leuchtmann A, Leistner E (2011) Periglandula, a new fungal genus within the Clavicipitaceae and its association with Convolvulaceae. Mycologia 103:1133–1145

    Article  PubMed  Google Scholar 

  34. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  PubMed  Google Scholar 

  35. Strobel GA, Hess WM, Li JY, Ford E, Sears J, Sidhu RS, Summerell B (1997) Pestalotiopsis guepinii, a Taxol-producing endophyte of the Wollemi pine, Wollemia nobilis. Aust J Bot 45:1073–1082

    Article  CAS  Google Scholar 

  36. Souza JJD, Vieira IJC, Rodrigues-Filho E, Braz-Filho R (2011) Terpenoids from endophytic Fungi. Molecules 16:10604–10618

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hardoim PR, Overbeek LSV, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol R 79:293–320

    Article  Google Scholar 

  38. Bálint M, Tiffin P, Hallström B, O’Hara RB, Olson MS, Fankhauser JD, Piepenbring M, Schmitt I (2013) Host genotype shapes the foliar fungal microbiome of balsam poplar (Populusbalsamifera). PLoS One 8:e53987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Álvarez-Loayza P, White JF, Torres MS, Balslev H, Kristiansen T, Svenning JC, Gil N (2011) Light converts endosymbiotic fungus to pathogen, influencing seedling survival and niche-space filling of a common tropical tree, Iriarteadeltoidea. PLoS One 6:e16386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Herre EA, Mejía LC, Kyllo DA, Rojas E, Maynard Z, Butler A, Van Bael SA (2007) Ecological implications of anti-pathogen effects of tropical fungal endophytes andmycorrhizae. Ecology 88:550–558

    Article  PubMed  Google Scholar 

  42. Bayat F, Mirlohi A, Khodambashi M (2009) Effects of endophytic fungi on some drought tolerance mechanisms of tall fescue in a hydroponics culture. Russ J Plant Physiol 56:510–516

    Article  CAS  Google Scholar 

  43. De Sassi C, Müller CB, Krauss J (2006) Fungal plant endosymbionts alter life history and reproductive success of aphid predators. Proc R Soc Biol Sci 273:1301–1306

    Article  Google Scholar 

  44. Rudgers JA, Afkhami ME, Rúa MA, Davitt AJ, Hammer S, Huguet VM (2009) A fungus among us: broad patterns of endophyte distribution in the grasses. Ecology 90:1531–1539

    Article  PubMed  Google Scholar 

  45. Saari S, Sundell J, Huitu O, Helander M, Ketoja E, Ylönen H, Saikkonen K (2010) Fungal-mediated multitrophic interactions – do grass endophytes in diet protect voles from predators? PLoS One 5:e9845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Havkin-Frenkel D, Belanger FC (2016) Biotechnological production of vanillin. In: Havkin-Frenkel D, Dudai N (eds) Biotechnology in flavor production, 2nd edn. Wiley, West Sussex, p 168

    Chapter  Google Scholar 

  47. Korthout H, Verpoorte R (2007) Vanilla. In: Berger RG (ed) Flavours and fragrances: chemistry, bioprocessing and sustainability. Springer Science + Business Media, Leipzig, pp 203–217

    Chapter  Google Scholar 

  48. Dixon RA (2011) Vanillin biosynthesis – not as simple as it seems? In: Havkin-Frenkel D, Belanger FC (eds) Handbook of Vanilla science and technology. Wiley-Blackwell, Oxford, pp 292–298

    Google Scholar 

  49. Kundu A (2017) Vanillin biosynthetic pathways in plants. Planta 245:1069–1078

    Article  CAS  PubMed  Google Scholar 

  50. Yang H, Barros-Rios J, Kourteva G, Rao X, Chen F, Shen H, Liu C, Podstolski A, Belanger F, Havkin-Frenkel D, Dixon RA (2017) A re-evaluation of the final step of vanillin biosynthesis in the orchid Vanilla planifolia. Phytochemistry 139:33–46

    Article  CAS  PubMed  Google Scholar 

  51. Funk C, Brodelius PE (1990) Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia. Andr Plant Physiol 94:95–101

    Article  CAS  PubMed  Google Scholar 

  52. Havkin-Frenkel D, Belanger FC (2007) Application of metabolic engineering to vanillin biosynthetic pathways in Vanilla planifolia. In: Verpoorte R, Alfermann AW, Johnson TS (eds) Applications of plant metabolic engineering. Springer, Dordrecht, pp 175–196

    Chapter  Google Scholar 

  53. Gallage NJ, Hansen EH, Kannangara R, Olsen CE, Motawia MS, Jørgensen K, Holme I, Hebelstrup K, Grisoni M, Møller BL (2014) Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nat Commun 5:4037

    Article  CAS  PubMed  Google Scholar 

  54. Dewick PM (2002) The shikimate pathway: aromatic amino acids and phenylpropanoids. In: Dewick PM (ed) Medicinal natural products. Wiley, West Sussex, pp 121–166

    Google Scholar 

  55. Havkin-frenkel D, Podstolski A, Dixon RA (2003) Vanillin biosynthetic pathway enzyme from Vanilla planifolia. US Patent US20030070188 A1 (US Patent Office: United States, 2003)

    Google Scholar 

  56. Mathew S, Abraha TE (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and feruloylesterases involved in its release and their applications. Crit Rev Biotechnol 24:59–83

    Article  CAS  PubMed  Google Scholar 

  57. Lesage-Meessen L, Stentelaire C, Lomascolo A, Couteau D, Asther M, Moukha S, Record E, Sigoillot J, Asther M (1999) Fungal transformation of ferulic acid from sugar beet pulp to natural vanillin. J Sci Food Agric 79:487–490

    Article  CAS  Google Scholar 

  58. Roling WFM, Kerler J, Braster M, Apriyantono A, Stam H, Verseveld HWV (2001) Microorganisms with a taste for Vanilla: microbial ecology of traditional Indonesian Vanilla curing. Appl Environ Microbiol 67:1995–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pinaria AG, Liew ECY, Burgess LW (2010) Fusariumspecies associated with Vanilla stem rot in Indonesia. Australas Plant Pathol 39:176–183

    Article  Google Scholar 

  60. Porras-Alfaro A, Bayman P (2007) Mycorrhizal fungi of Vanilla: diversity, specificity and effects on seed germination and plant growth. Mycologia 99:510–525

    Article  CAS  PubMed  Google Scholar 

  61. Dunphy P, Bala K (2012b) The role of microorganisms in Vanilla curing. Part 2: Microbial transformation of phenols and other compounds. Perfum Flavor 37:22–27

    CAS  Google Scholar 

  62. Gu F, Chen Y, Fang Y, Wu G, Tan L (2015) Contribution of Bacillus isolates to the flavor profiles of Vanilla beans assessed through aroma analysis and chemometrics. Molecules 20:18422–18436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mäkelä MR, Marinović M, Nousiainen P, Liwanag AJ, Benoit I, Sipilä J, Hatakka A, de Vries RP, Hildén KS (2015) Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. Adv Appl Microbiol 91:63–137

    Article  PubMed  CAS  Google Scholar 

  64. Reineccius G (1998) Natural flavoring materials. In: Reineccius G (ed) Source book of flavors, 2nd edn. Chapman & Hall, New York, p 357

    Google Scholar 

  65. Takahashi M, Inai Y, Miyazawa N, Kurobayashi Y, Fujita A (2013) Key odorants in cured Madagascar Vanilla beans (Vanilla planifolia) of differing bean quality. Biosci Biotech Bioch 77:606–611

    Article  CAS  Google Scholar 

  66. Leffingwell & Associates (2017) Odor & flavor detection thresholds in water (in parts per billion). http://www.leffingwell.com/odorthre.htm. Accessed 5 Mar 2017

  67. Buccellato F (2011) Vanilla in perfumery and beverage flavors. In: Havkin-Frenkel D, Belanger FC (eds) Handbook of Vanilla science and technology. Wiley-Blackwell, Oxford, pp 235–240

    Google Scholar 

  68. Grice K, Lu H, Atahan P, Asif M, Hallmann C, Greenwood P, Maslen E, Tulipani S, Williford K, Dodson J (2009) New insights into the origin of perylene in geological samples. Geochim Cosmochim Acta 73:6531–6543

    Article  CAS  Google Scholar 

  69. David AS, Seabloom EW (2016) Plant host species and geographic distance affect the structure of aboveground fungal symbiont communities, and environmental filtering affects belowground communities in a coastal dune ecosystem. Microb Ecol 71:912–926

    Article  PubMed  Google Scholar 

  70. Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D, Gilbert JA (2015) The soil microbiome influences grapevine-associated microbiota. Microb Cell 2:171–173

    Article  PubMed  PubMed Central  Google Scholar 

  71. Varma VC, Gange AC (2014) Advances in endophytic research. Springer, New Delhi

    Book  Google Scholar 

  72. Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42:360–368

    Article  PubMed  Google Scholar 

  73. Pusztahelyi T, Holb IJ, Pócsi I (2015) Secondary metabolites in fungus-plant interactions. Front Plant Sci 6:573. https://doi.org/10.3389/fpls.2015.00573

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37. https://doi.org/10.1007/s10529-015-1814-4

  75. Hongsheng Y, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449

    Article  CAS  Google Scholar 

  76. Gallage NJ, Møller BL (2015) Vanillin–Bioconversion and Bioengineering of the Most Popular Plant Flavor and Its De Novo Biosynthesis in the Vanilla Orchid. Mol Plant 8:40–57

    Google Scholar 

  77. Khoyratty S, Kodja H, Verpoorte R (2018) Vanilla flavor production methods: a review. Ind Crops Prod 125:433–442

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khoyratty, S., Verpoorte, R., Kodja, H. (2021). Vanillin: Biosynthesis, Biotechnology, and Bioproduction. In: Merillon, JM., Kodja, H. (eds) Orchids Phytochemistry, Biology and Horticulture. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11257-8_14-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11257-8_14-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11257-8

  • Online ISBN: 978-3-030-11257-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Vanillin: Biosynthesis, Biotechnology, and Bioproduction
    Published:
    03 March 2021

    DOI: https://doi.org/10.1007/978-3-030-11257-8_14-2

  2. Original

    Vanillin: Biosynthesis, Biotechnology, and Bioproduction
    Published:
    07 November 2020

    DOI: https://doi.org/10.1007/978-3-030-11257-8_14-1