Skip to main content
Log in

Antioxidant evaluation of Fumaria parviflora L. extract loaded nanocapsules obtained by green extraction methods in oxidative stability of sunflower oil

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In the present study, the antioxidant activity of the extracts of Fumaria parviflora L. root and leaves obtained by ultrasound-assisted, microwave-assisted, supercritical fluid, and subcritical water extraction was assayed through DPPH radical scavenging method, ferric reduction assay, β-carotene: linoleic acid bleaching assay, and rancimat. The higher phenolic (50.47 mg GA/g DM) and flavonoid content (13.14 mg QE/g DM) was observed in ultrasonic leaves extract. The concentration-dependent antioxidant activity was observed for all extracts in all evaluation methods. The ultrasonic extract of F. parviflora L. leaves was incorporated into nanocapsules which were prepared with maltodextrin (MD), and gum Arabic (GA) at different ratio (1:0, 0:1, 1:1). The antioxidant activity of nano encapsulated extract was evaluated in sunflower oil (SFO) during 50 days of storage. Howbeit, the MD-GA nanocapsule was smaller than other nanocapsules, they had higher antioxidant properties in SFO. At the end of storage time, the lowest peroxide value (9.28 meq O2 kg−1 oil) and thiobarbituric acid value (4.34 mg malondialdehyde eq kg−1 oil) were related to oil containing MD-GA nanocapsules in comparison with control sample which exhibited the highest peroxide value (94.03 meq O2 kg−1 oil) and thiobarbituric acid value (0.32 mg malondialdehyde eq kg−1 oil) values. Also, the tert-Butylhydroquinone (TBHQ) had higher antioxidant capacity at lower concentration in all antioxidant tests, the SFO samples containing nanoencapsulated extract were more resistant to oxidation than control and TBHQ samples. The results of this study suggest that encapsulated F. parviflora L. leaves extract can be used as natural antioxidant to preserve sunflower oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W. Rizvi, M. Fayazuddin, O. Singh, S.N. Syed, S. Moin, K. Akhtar, A. Kumar, Anti-inflammatory effect of Fumaria parviflora leaves based on TNF-α, IL-1, IL-6 and antioxidant potential. Avicenna. J. Phytomed. 7, 37–45 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. M. Shokoohi, H. Shoorei, M. Soltani, S.H. Abtahi-Eivari, R. Salimnejad, M. Moghimian, Protective effects of the hydroalcoholic extract of Fumaria parviflora on testicular injury induced by torsion/detorsion in adult rats. Andrologia 50, e13047 (2018). https://doi.org/10.1111/and.13047

    Article  CAS  PubMed  Google Scholar 

  3. S. Kumar, A. Kamboj, A.K. Sharma, Antioxidant evaluation of ethanolic extract of Fumaria parviflora Lam. obtained from root, stem, leaf and fruit and measurement of their total phenols and flavonoids. Pharm. Innov. J. 7, 577–579 (2018)

    Google Scholar 

  4. R.E. Kenari, Z.R. Amiri, A. Motamedzadegan, J.M. Milani, J. Farmani, R. Farahmandfar, Optimization of Iranian golpar (Heracleum persicum) extract encapsulation using sage (Salvia macrosiphon) seed gum: chitosan as a wall materials and its effect on the shelf life of soybean oil during storage. J. Food. Meas. Charact. 14, 2828–2839 (2020). https://doi.org/10.1007/s11694-020-00528-8

    Article  Google Scholar 

  5. C.S. Dzah, Y. Duan, H. Zhang, D.A. Authur, H. Ma, Ultrasound-, subcritical water-and ultrasound assisted subcritical water-derived Tartary buckwheat polyphenols show superior antioxidant activity and cytotoxicity in human liver carcinoma cells. Food. Res. Int. 137, 109598 (2020). https://doi.org/10.1016/j.foodres.2020.109598

    Article  CAS  PubMed  Google Scholar 

  6. S.S. Tometri, M. Ahmady, P. Ariaii, M.S. Soltani, Extraction and encapsulation of Laurus nobilis leaf extract with nano-liposome and its effect on oxidative, microbial, bacterial and sensory properties of minced beef. J. Food. Meas. Charact. 14, 3333–3344 (2020). https://doi.org/10.1007/s11694-020-00578-y

    Article  Google Scholar 

  7. S. Belgheisi, A. Motamedzadegan, J.M. Milani, L. Rashidi, A. Rafe, Impact of ultrasound processing parameters on physical characteristics of lycopene emulsion. J. Food. Sci. Technol. 58, 484–493 (2020). https://doi.org/10.1007/s13197-020-04557-5

    Article  CAS  PubMed  Google Scholar 

  8. Y. Hu, Y. Li, W. Zhang, G. Kou, Z. Zhou, Physical stability and antioxidant activity of citrus flavonoids in arabic gum-stabilized microcapsules: modulation of whey protein concentrate. Food. Hydrocol. 77, 588–597 (2018). https://doi.org/10.1016/j.foodhyd.2017.10.037

    Article  CAS  Google Scholar 

  9. B. Akdeniz, G. Sumnu, S. Sahin, The effects of maltodextrin and gum arabic on encapsulation of onion skin phenolic compounds. Chem. Eng. Trans. 57, 1891–1896 (2017). https://doi.org/10.3303/CET1757316

    Article  Google Scholar 

  10. G.N. Mezza, A.V. Borgarello, N.R. Grosso, H. Fernandez, M.C. Pramparo, M.F. Gayol, Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil. Food. Chem. 242, 9–15 (2018). https://doi.org/10.1016/j.foodchem.2017.09.042

    Article  CAS  PubMed  Google Scholar 

  11. M. Roostaee, M. Barzegar, M.A. Sahari, Z. Rafiee, The enhancement of pistachio green hull extract functionality via nanoliposomal formulation: studying in soybean oil. J. Food. Sci. Technol. 54, 3620–3629 (2017). https://doi.org/10.1007/s13197-017-2822-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Salami, N. Asefi, R.E. Kenari, M. Gharekhani, Addition of pumpkin peel extract obtained by supercritical fluid and subcritical water as an effective strategy to retard canola oil oxidation. J. Food. Meas. Charact. 14, 2433–2442 (2020). https://doi.org/10.1007/s11694-020-00491-4

    Article  Google Scholar 

  13. D. Chatterjee, P. Bhattacharjee, Comparative evaluation of the antioxidant efficacy of encapsulated and un-encapsulated eugenol-rich clove extracts in soybean oil: shelf-life and frying stability of soybean oil. J. Food. Eng. 117, 545–550 (2013). https://doi.org/10.1016/j.jfoodeng.2012.11.016

    Article  CAS  Google Scholar 

  14. R. Esmaeilzadeh Kenari, F. Mohsenzadeh, Z.R. Amiri, Antioxidant activity and total phenolic compounds of Dezful sesame cake extracts obtained by classical and ultrasound-assisted extraction methods. Food. Sci. Nutr. 2, 426–435 (2014). https://doi.org/10.1002/fsn3.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. I.E. Orhan, N. Ozturk, B. Sener, Antiprotozoal assessment and phenolic acid profiling of five Fumaria (fumitory) species. Asian. Pac. J. Trop. Med. 8, 283–286 (2015). https://doi.org/10.1016/S1995-7645(14)60331-X

    Article  PubMed  Google Scholar 

  16. F. Simoes Grilo, Y. Srisaard, S.C. Wang, Prediction of walnut deterioration using kernel oxidative stability. Foods 9, 1207 (2020). https://doi.org/10.3390/foods9091207

    Article  CAS  PubMed Central  Google Scholar 

  17. I.E. Orhan, B. Şener, S.G. Musharraf, Antioxidant and hepatoprotective activity appraisal of four selected Fumaria species and their total phenol and flavonoid quantities. Exptl. Toxicol. Pathol. 64, 205–209 (2012). https://doi.org/10.1016/j.etp.2010.08.007

    Article  CAS  Google Scholar 

  18. I. Ivanov, R. Vrancheva, A. Marchev, N. Petkova, I. Aneva, P. Denev, V.G. Georgiev, A. Pavlov, Antioxidant activities and phenolic compounds in Bulgarian Fumaria species. Int. J. Curr. Microbiol. App. Sci. 3, 296–306 (2014)

    CAS  Google Scholar 

  19. M.S. Pak-Dek, A. Osman, N.G. Sahib, N. Saari, M. Markom, A.A. Hamid, F. Anwar, Effects of extraction techniques on phenolic components and antioxidant activity of Mengkudu (Morinda citrifolia L.) leaf extracts. J. Med. Plant. Res. 5, 5050–5057 (2011). https://doi.org/10.5897/JMPR.9000521

    Article  CAS  Google Scholar 

  20. M. Co, A. Fagerlund, L. Engman, K. Sunnerheim, P.J. Sjöberg, C.J.P. Turner, Extraction of antioxidants from spruce (Picea abies) bark using eco-friendly solvents. Phytochem. Anal. 23, 1–11 (2012). https://doi.org/10.1002/pca.1316

    Article  CAS  PubMed  Google Scholar 

  21. L.G.G. Rodrigues, S. Mazzutti, I. Siddique, M. da Silva, L. Vitali, S.R.S. Ferreira, Subcritical water extraction and microwave-assisted extraction applied for the recovery of bioactive components from Chaya (Cnidoscolus aconitifolius Mill.). J. Supercrit. Fluids. 165, 104976 (2020). https://doi.org/10.1016/j.supflu.2020.104976

    Article  CAS  Google Scholar 

  22. K.H. Lee, J.-S. Lee, E.S. Kim, H.G. Lee, Preparation, characterization, and food application of rosemary extract-loaded antimicrobial nanoparticle dispersions. LWT 101, 138–144 (2019). https://doi.org/10.1016/j.lwt.2018.10.072

    Article  CAS  Google Scholar 

  23. I.T. Karabegović, S.S. Stojičević, D.T. Veličković, Z.B. Todorović, N.Č Nikolić, M.L. Lazić, The effect of different extraction techniques on the composition and antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Ind. Crops Prod. 54, 142–148 (2014). https://doi.org/10.1016/j.indcrop.2013.12.047

    Article  CAS  Google Scholar 

  24. D.I. Díaz, C.I. Beristain, E. Azuara, G. Luna, M. Jimenez, Effect of wall material on the antioxidant activity and physicochemical properties of Rubus fruticosus juice microcapsules. J. Microencapsul. 32, 247–254 (2015). https://doi.org/10.3109/02652048.2015.1010458

    Article  CAS  PubMed  Google Scholar 

  25. L.F. Ballesteros, M.J. Ramirez, C.E. Orrego, J.A. Teixeira, S.I. Mussatto, Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food. Chem. 237, 623–631 (2017). https://doi.org/10.1016/j.foodchem.2017.05.142

    Article  CAS  PubMed  Google Scholar 

  26. M.J. Ramírez, G.I. Giraldo, C.E. Orrego, Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates. Powder. Technol. 277, 89–96 (2015). https://doi.org/10.1016/j.powtec.2015.02.060

    Article  CAS  Google Scholar 

  27. S.A. Mahdavi, S.M. Jafari, E. Assadpoor, D. Dehnad, Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. Int. J. Biol. Macromol. 85, 379–385 (2016). https://doi.org/10.1016/j.ijbiomac.2016.01.011

    Article  CAS  Google Scholar 

  28. Y.R.R.S. Rezende, J.P. Nogueira, N. Narain, Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: chemical, morphological and chemometric characterization. Food. Chem. 254, 281–291 (2018). https://doi.org/10.1016/j.foodchem.2018.02.026

    Article  CAS  PubMed  Google Scholar 

  29. A. Kalušević, S. Lević, B. Čalija, M. Pantić, M. Belović, V. Pavlović, B. Bugarski, J. Milić, S. Žilić, V. Nedović, Microencapsulation of anthocyaninrich black soybean coat extract by spray drying using maltodextrin, gum Arabic and skimmed milk powder. J. Microencapsul. 34, 475–487 (2017). https://doi.org/10.1080/02652048.2017.1354939

    Article  CAS  PubMed  Google Scholar 

  30. E. Anwar, N. Farhana, Formulation and evaluation of phytosome-loaded maltodextrin-gum arabic microsphere system for delivery of camellia sinensis extract. J. Young. Pharm. 10, S56 (2018). https://doi.org/10.5530/jyp.2018.2s.11

    Article  CAS  Google Scholar 

  31. J.F. Gomes, S. Rocha, M. do Carmo Pereira, I. Peres, S. Moreno, J. Toca-Herrera, M.A. Coelho, , Lipid/particle assemblies based on maltodextrin–gum arabic core as bio-carriers. Colloids. Surf. B 76, 449–455 (2010). https://doi.org/10.1016/j.colsurfb.2009.12.004

    Article  CAS  Google Scholar 

  32. K.M. Khazaei, S. Jafari, M. Ghorbani, A.H. Kakhki, Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydr. Polym. 105, 57–62 (2014). https://doi.org/10.1016/j.carbpol.2014.01.042

    Article  CAS  Google Scholar 

  33. U. Bazylińska, D. Wawrzyńczyk, J. Kulbacka, R. Frąckowiak, B. Cichy, A. Bednarkiewicz, M. Samoć, K. Wilk, Polymeric nanocapsules with upconverting nanocrystals cargo make ideal fluorescent bioprobes. Sci. Rep. 6, 1–14 (2016). https://doi.org/10.1038/srep29746

    Article  CAS  Google Scholar 

  34. F. Royshanpour, J. Tavakoli, F. Beigmohammadi, S. Alaee, Improving antioxidant effect of phenolic extract of Mentha piperita using nanoencapsulation process. J. Food Meas. Charact. 15, 23–32 (2020). https://doi.org/10.1007/s11694-020-00606-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razie Razavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavi, R., Kenari, R.E. Antioxidant evaluation of Fumaria parviflora L. extract loaded nanocapsules obtained by green extraction methods in oxidative stability of sunflower oil. Food Measure 15, 2448–2457 (2021). https://doi.org/10.1007/s11694-021-00837-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00837-6

Keywords

Navigation