Skip to main content

Advertisement

Log in

High Hydrostatic Pressure-Assisted Extraction of Carotenoids from Papaya (Carica papaya L. cv. Maradol) Tissues Using Soybean and Sunflower Oil as Potential Green Solvents

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Carotenoids are health promoting compounds which bioavailability depends on their release from the intracellular compartments. The aim of this study was to evaluate the effect of the application of different levels of pressure, time and temperature in High Hydrostatic Pressure-Assisted Extraction (HHPAE) processes, and the use of soybean and sunflower oils on the extraction yield of carotenoids present in papaya pulp and peel. . Papaya (pulp and peel) as source of carotenoids and soybean and sunflower oils as eco-friendly solvents were used. The effects of temperature, pressure and time (20–40 °C, 300–500 MPa and 2–8 min) on the carotenoid extraction yield were studied applying a central composite experimental design. Carotenoids and esters in papaya were analysed by high performance liquid chromatography (HPLC-DAD-MS/MS) and by spectrophotometric methods. The main carotenoids found in carotenoid-rich oils were (all-E)-lycopene, (13Z)-lycopene isomer, β-carotene, (all-E)-β-cryptoxanthin and xanthophyll esters as (all-E)-β-cryptoxanthin caprate, (all-E)-β-cryptoxanthin laurate and (all-E)-β-cryptoxanthin myristate. The optimal extraction condition was obtained at 400 MPa, 40.5 °C for 5 min, with the highest (all-E)-lycopene extraction yield (99.1%) from papaya pulp using soybean oil. The highest (all-E)-β-carotene (14.0%) and (all-E)-β-cryptoxanthin (19.3%) extraction yields were obtained from peel extracts at 500 MPa, 35 °C for 2 min using soybean oil and 400 MPa, 27.5 °C for 5 min using sunflower oil, respectively. The results showed that carotenoid extraction yields in papaya pulp and peel extracts were higher applying mild pressures (300–400 MPa). Low xanthophyll and xanthophyll esters extraction efficiency (0.8–3.1%) was observed due to the low polarity of the vegetable oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cano MP, de Ancos B, Lobo MG, Monreal M (1996) Carotenoid pigments and colour of hermaphrodite and female papaya fruits (Carica papaya L.) cv. Sunrise during post‐harvest ripening. J Sci Food Agric 71(3):351–358. https://doi.org/10.1002/(SICI)1097-0010(199607)71:3351::AID-JSFA5923.0.CO;2-O

  2. Jing SL, Yen KP, Dash GK (2019) In vitro antioxidant and photoprotective activities of Carica papaya fruits. In Vitro 12(4). https://doi.org/10.22159/ajpcr.2019.v12i4.31666

  3. Martins GF, Fabi JP, Mercadante AZ, de Rosso VV (2016) The ripening influence of two papaya cultivars on carotenoid biosynthesis and radical scavenging capacity. Food Res Int 81:197–202. https://doi.org/10.1016/j.foodres.2015.11.027

    Article  CAS  Google Scholar 

  4. Ribeiro D, Freitas M, Silva AM, Carvalho F, Fernandes E (2018) Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food Chem Toxicol 120:681–699. https://doi.org/10.1016/j.fct.2018.07.060

    Article  CAS  PubMed  Google Scholar 

  5. Calvache JN, Cueto M, Farroni A, de Escalada Pla M, Gerschenson LN (2016) Antioxidant characterization of new dietary fiber concentrates from papaya pulp and peel (Carica papaya L.). J Funct Foods 27:319–328. https://doi.org/10.1016/j.jff.2016.09.012

    Article  CAS  Google Scholar 

  6. Schweiggert RM, Mezger D, Schimpf F, Steingass CB, Carle R (2012) Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato. Food Chem 135(4):2736–2742. https://doi.org/10.1016/j.foodchem.2012.07.035

    Article  CAS  PubMed  Google Scholar 

  7. Sancho LEGG, Yahia EM, González-Aguilar GA (2011) Identification and quantification of phenols, carotenoids, and vitamin C from papaya (Carica papaya L., cv. Maradol) fruit determined by HPLC-DAD-MS/MS-ESI. Food Res Int 44(5):1284–1291. https://doi.org/10.1016/j.foodres.2010.12.001

  8. Eggersdorfer M, Wyss A (2018) Carotenoids in human nutrition and health. Arch Biochem Biophys 652:18–26. https://doi.org/10.1016/j.abb.2018.06.001

    Article  CAS  PubMed  Google Scholar 

  9. Griffiths K, Aggarwal BB, Singh RB, Buttar HS, Wilson D, De Meester F (2016) Food antioxidants and their anti-inflammatory properties: a potential role in cardiovascular diseases and cancer prevention. Diseases 4(3):28. https://doi.org/10.3390/diseases4030028

    Article  CAS  PubMed Central  Google Scholar 

  10. Murillo AG, DiMarco DM, Fernandez ML (2016) The potential of non-provitamin A carotenoids for the prevention and treatment of non-alcoholic fatty liver disease. Biology 5(4):42. https://doi.org/10.3390/biology5040042

    Article  CAS  PubMed Central  Google Scholar 

  11. Bohn T (2008) Bioavailability of non-provitamin A carotenoids. Curr Nutr Food Sci 4(4):240–258. https://doi.org/10.2174/157340108786263685

    Article  CAS  Google Scholar 

  12. Estevez-Santiago R, Olmedilla-Alonso B, Beltrán-de-Miguel B, Cuadrado-Vives C (2016) Lutein and zeaxanthin supplied by red/orange foods and fruits are more closely associated with macular pigment optical density than those from green vegetables in Spanish subjects. Nutr Res 36(11):1210–1221. https://doi.org/10.1016/j.nutres.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  13. Xavier AAO, Mercadante AZ (2019) The bioaccessibility of carotenoids impacts the design of functional foods. Curr Opin Food Sci 26:1–8. https://doi.org/10.1016/j.cofs.2019.02.015

    Article  Google Scholar 

  14. FAO (2014) Definitional framework of food losses and waste. Rome, Italy: FAO

  15. Ayala-Zavala JF, Rosas-Domínguez C, Vega-Vega V, González-Aguilar GA (2010) Antioxidant enrichment and antimicrobial protection of fresh-cut fruits using their own by-products: looking for integral exploitation. J Food Sci 75(8):R175–R181. https://doi.org/10.1111/j.1750-3841.2010.01792.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Can-Cauich CA, Sauri-Duch E, Betancur-Ancona D, Chel-Guerrero L, González-Aguilar GA, Cuevas-Glory LF, Pérez-Pacheco E, Moo-Huchin VM (2017) Tropical fruit peel powders as functional ingredients: evaluation of their bioactive compounds and antioxidant activity. J Funct Foods 37:501–506. https://doi.org/10.1016/j.jff.2017.08.028

    Article  CAS  Google Scholar 

  17. Jiménez-Moreno N, Esparza I, Bimbela F, Gandía LM, Ancín-Azpilicueta C (2020) Valorization of selected fruit and vegetable wastes as bioactive compounds: opportunities and challenges. Crit Rev Environ Sci Technol 50(20):2061–2108. https://doi.org/10.1080/10643389.2019.1694819

    Article  CAS  Google Scholar 

  18. Uribe E, Delgadillo A, Giovagnoli-Vicuña C, Quispe-Fuentes I, Zura-Bravo L (2015) Extraction techniques for bioactive compounds and antioxidant capacity determination of Chilean papaya (Vasconcellea pubescens) Fruit J Chem. https://doi.org/10.1155/2015/347532

  19. Baria B, Upadhyay N, Singh AK, Malhotra RK (2019) Optimization of ‘green’ extraction of carotenoids from mango pulp using split plot design and its characterization. LWT-Food Sci Technol 104:186–194. https://doi.org/10.1016/j.lwt.2019.01.044

    Article  CAS  Google Scholar 

  20. Dong J, Liu Y, Liang Z, Wang W (2010) Investigation on ultrasound-assisted extraction of salvianolic acid B from Salvia miltiorrhiza root. Ultrason Sonochem 17(1):61–65. https://doi.org/10.1016/j.ultsonch.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  21. Etzbach L, Stolle R, Anheuser K, Herdegen V, Schieber A, Weber F (2020) Impact of different pasteurization techniques and subsequent ultrasonication on the in vitro bioaccessibility of carotenoids in Valencia orange (Citrus sinensis (L.) Osbeck) juice. Antioxidants 9(6):534. https://doi.org/10.3390/antiox9060534

  22. Li Y, Fabiano-Tixier AS, Tomao V, Cravotto G, Chemat F (2013) Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrason Sonochem 20(1):12–18. https://doi.org/10.1016/j.ultsonch.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  23. Andreou V, Dimopoulos G, Dermesonlouoglou E, Taoukis P (2020) Application of pulsed electric fields to improve product yield and waste valorization in industrial tomato processing. J Food Eng 270 109778. https://doi.org/10.1016/j.jfoodeng.2019.109778

  24. Roohinejad S, Everett DW, Oey I (2014) Effect of pulsed electric field processing on carotenoid extractability of carrot purée. Int J Food Sci Technol 49(9):2120–2127. https://doi.org/10.1111/ijfs.12510

    Article  CAS  Google Scholar 

  25. Briones-Labarca V, Giovagnoli-Vicuña C, Cañas-Sarazúa R (2019) Optimization of extraction yield, flavonoids and lycopene from tomato pulp by high hydrostatic pressure-assisted extraction. Food Chem 278:751–759. https://doi.org/10.1016/j.foodchem.2018.11.106

    Article  CAS  PubMed  Google Scholar 

  26. Cano MP, Gómez-Maqueo A, Fernández-López R, Welti-Chanes J, García-Cayuela T (2019) Impact of high hydrostatic pressure and thermal treatment on the stability and bioaccessibility of carotenoid and carotenoid esters in astringent persimmon (Diospyros kaki Thunb, var. Rojo Brillante). Food Res Int 123:538–549. https://doi.org/10.1016/j.foodres.2019.05.017

    Article  CAS  PubMed  Google Scholar 

  27. Hernández-Carrión M, Vázquez-Gutiérrez JL, Hernando I, Quiles A (2014) Impact of high hydrostatic pressure and pasteurization on the structure and the extractability of bioactive compounds of persimmon “Rojo Brillante.” J Food Sci 79(1):C32–C38. https://doi.org/10.1111/1750-3841.12321

    Article  CAS  PubMed  Google Scholar 

  28. Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: concept and principles. Int J Mol Sci 13(7):8615–8627. https://doi.org/10.3390/ijms13078615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goula AM, Ververi M, Adamopoulou A, Kaderides K (2017) Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason Sonochem 34:821–830. https://doi.org/10.1016/j.ultsonch.2016.07.022

    Article  CAS  PubMed  Google Scholar 

  30. Ordóñez-Santos LE, Pinzón-Zarate LX, González-Salcedo LO (2015) Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology. Ultrason Sonochem 27:560–566. https://doi.org/10.1016/j.ultsonch.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  31. Chemat F, Abert-Vian M, Fabiano-Tixier AS, Strube J, Uhlenbrock L, Gunjevic V, Cravotto G (2019) Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends Anal Chem 118:248–263. https://doi.org/10.1016/j.trac.2019.05.037

    Article  CAS  Google Scholar 

  32. Plaza L, Colina C, de Ancos B, Sánchez-Moreno C, Cano MP (2012) Influence of ripening and astringency on carotenoid content of high-pressure treated persimmon fruit (Diospyros kaki L.). Food Chem 130:591–597. https://doi.org/10.1016/j.foodchem.2011.07.080

    Article  CAS  Google Scholar 

  33. Otero L, Molina-Garcıa AD, Sanz PD (2000) Thermal effect in foods during quasi-adiabatic pressure treatments. Innov Food Sci Emerg Technol 1(2):119–126. https://doi.org/10.1016/S1466-8564(00)00009-6

    Article  Google Scholar 

  34. Putnik P, Bursać Kovačević D, Ježek D, Šustić I, Zorić Z, Dragović‐Uzelac V (2018) High‐pressure recovery of anthocyanins from grape skin pomace (Vitis vinifera cv. Teran) at moderate temperature. J Food Process Preserv 42(1):e13342. https://doi.org/10.1111/jfpp.13342

  35. Mutsokoti L, Panozzo A, Musabe ET, Van Loey A, Hendrickx M (2015) Carotenoid transfer to oil upon high pressure homogenisation of tomato and carrot based matrices. J Funct Foods 19:775–785. https://doi.org/10.1016/j.jff.2015.10.017

    Article  CAS  Google Scholar 

  36. Meléndez-Martínez AJ, Britton G, Vicario IM, Heredia FJ (2007) Relationship between the colour and the chemical structure of carotenoid pigments. Food Chem 101(3):1145–1150. https://doi.org/10.1016/j.foodchem.2006.03.015

    Article  CAS  Google Scholar 

  37. Mercadante AZ, Rodrigues DB, Petry FC, Mariutti LRB (2017) Carotenoid esters in foods—a review and practical directions on analysis and occurrence. Food Res Int 99:830–850. https://doi.org/10.1016/j.foodres.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  38. Chandrika UG, Jansz ER, Wickramasinghe SN, Warnasuriya ND (2003) Carotenoids in yellow‐and red‐fleshed papaya (Carica papaya L.). J Sci Food Agric 83(12):1279–1282. https://doi.org/10.1002/jsfa.1533

  39. Hernández-Brenes C, Ramos-Parra PA, Jacobo-Velázquez DA, Villarreal-Lara R, Díaz-De la Garza RI (2013) High hydrostatic pressure processing as a strategy to increase carotenoid contents of tropical fruits. In Tropical and subtropical fruits: flavors, color, and health benefits (pp. 29-42). Am Chem Soc. https://doi.org/10.1021/bk-2013-1129.ch002

  40. Breithaupt DE, Schwack W (2000) Determination of free and bound carotenoids in paprika (Capsicum annuum L.) by LC/MS. Eur Food Res Technol 211(1):0052–0055. https://doi.org/10.1007/s002170050588

  41. Schweiggert RM, Steingass CB, Mora E, Esquivel P, Carle R (2011) Carotenogenesis and physico-chemical characteristics during maturation of red fleshed papaya fruit (Carica papaya L.). Food Res Int 44(5):1373–1380. https://doi.org/10.1016/j.foodres.2011.01.029

  42. Phothiset S, Charoenrein S (2014) Effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues. J Sci Food Agric 94(2):189–196. https://doi.org/10.1002/jsfa.6226

    Article  CAS  PubMed  Google Scholar 

  43. De Ancos B, Sgroppo S, Plaza L, Cano MP (2002) Possible nutritional and health-related value promotion in orange juice preserved by high-pressure treatment. J Sci Food Agric 82(8):790–796. https://doi.org/10.1002/jsfa.1093

    Article  CAS  Google Scholar 

  44. Knorr D (1993) Effects of high-hydrostatic-pressure processes on food safety and quality. Food Technol (Chicago) 47(6):156–161

    Google Scholar 

  45. Sanchez-Moreno C, De Ancos B, Plaza L, Elez-Martinez P, Cano MP (2009) Nutritional approaches and health-related properties of plant foods processed by high pressure and pulsed electric fields. Crit Rev Food Sci Nutr 49(6):552–576. https://doi.org/10.1080/10408390802145526

    Article  CAS  PubMed  Google Scholar 

  46. Chemat S, Lagha A, AitAmar H, Bartels PV, Chemat F (2004) Comparison of conventional and ultrasound-assisted extraction of carvone and limonene from caraway seeds. Flavour Frag J 19(3):188–195b. https://doi.org/10.1002/ffj.1339

    Article  CAS  Google Scholar 

  47. Sahasrabudhe SN, Rodriguez-Martinez V, O’Meara M, Farkas BE (2017) Density, viscosity, and surface tension of five vegetable oils at elevated temperatures: measurement and modeling. Int J Food Prop 20(sup2):1965–1981. https://doi.org/10.1080/10942912.2017.1360905

    Article  CAS  Google Scholar 

  48. Rahimi S, Mikani M (2019) Lycopene green ultrasound-assisted extraction using edible oil accompany with response surface methodology (RSM) optimization performance: Application in tomato processing wastes. Microchem J 146:1033–1042. https://doi.org/10.1016/j.microc.2019.02.039

    Article  CAS  Google Scholar 

  49. Yara-Varón E, Fabiano-Tixier AS, Balcells M, Canela-Garayoa R, Bily A, Chemat F (2016) Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC Adv 6(33):27750–27759. https://doi.org/10.1039/C6RA03016E

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Spanish Ministry of Science and Innovation (Spain), through project number RTA2015-00044-C02-02 and the Tecnológico de Monterrey, Mexico (FunFoodEmertec). Author Sara Lara-Abia received financial support from Tecnológico de Monterrey (México) (Research Chair Funds CAT-200) and CONACYT-SEP (Research Project 101700 and Doctoral Scholarship no. 895077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pilar Cano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1114 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara-Abia, S., Gomez-Maqueo, A., Welti-Chanes, J. et al. High Hydrostatic Pressure-Assisted Extraction of Carotenoids from Papaya (Carica papaya L. cv. Maradol) Tissues Using Soybean and Sunflower Oil as Potential Green Solvents. Food Eng Rev 13, 660–675 (2021). https://doi.org/10.1007/s12393-021-09289-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-021-09289-6

Keywords

Navigation