Skip to main content

Advertisement

Log in

Controlled Instant Pressure Drop (DIC) Pretreatment to Enhance Fractionation and Enzymatic Saccharification of Poppy Capsule Waste

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass is an important resource for biofuels, chemicals, and bioproducts; however, deconstructing its recalcitrant structure is a challenge. In this study, controlled instant pressure drop (DIC)-assisted alkaline pretreatment process of poppy capsule waste (PCW) was developed and statistically optimized with the aim of enhanced fractionation efficiency and production of fermentable sugars and xylooligosaccharides (XOs). The effects of DIC process variables on PCW fractionation were investigated. The optimal DIC conditions were found as 5 bar vapor pressure, 540 s processing time, and 9% (w/w) moisture content. At the second stage, optimum conditions for alkaline extraction were found as 22.58% (w/w) KOH, 1-h extraction time, and 22.15 mL precipitant volume. Process optimization concluded a hemicellulose separation yield of 26.37±0.08%, corresponding to 104.7% increase. Process optimization also contributed to the sustainability of the process by reducing KOH and precipitant consumption by 9.7% and 11.4%, respectively, with a concurrent shortening of the processing time from 24 to 1 h. DIC pretreatment enhanced the enzymatic hydrolysis yield of PCW, and a maximum glucan-to-glucose conversion yield of 22.85±0.74% was obtained, which corresponds to a 9-fold increase. Hydrolysis of PCW and hemicellulose-rich fraction by xylanase yielded xylose-free xylobiose (X2) as the principal product. SEM analysis demonstrated the expansion of PCW structure by DIC pretreatment, reasoning the higher fractionation efficiency and enzymatic hydrolysis yields. The optimized process could be an efficient option for lignocellulose fractionation, enzymatic saccharification, and XOs production within biorefinery concept while reducing the requirement for chemicals and processing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. TMO (2018) Turkish Grain Board Poppy Report for 2018. http://www.tmo.gov.tr/Upload/Document/poppy.pdf. Accessed 26 Feb 2020

  2. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  CAS  PubMed  Google Scholar 

  3. Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kaminski M (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23:2937. https://doi.org/10.3390/molecules23112937

    Article  CAS  PubMed Central  Google Scholar 

  4. Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, Bai FW (2019) Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol Adv 37:491–504. https://doi.org/10.1016/j.biotechadv.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  5. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. https://doi.org/10.1021/ie801542g

    Article  CAS  Google Scholar 

  6. Farhat W, Venditti R, Quick A, Taha M, Mignard N, Becquart F, Ayoub A (2017) Hemicellulose extraction and characterization for applications in paper coatings and adhesives. Ind Crop Prod 107:370–377. https://doi.org/10.1016/j.indcrop.2017.05.055

    Article  CAS  Google Scholar 

  7. Liu HM, Li YR, Wu M, Yin HS, Wang XD (2018) Two-step isolation of hemicelluloses from Chinese quince fruit: effect of hydrothermal treatment on structural features. Ind Crop Prod 111:615–624. https://doi.org/10.1016/j.indcrop.2017.11.035

    Article  CAS  Google Scholar 

  8. Ajao O, Marinova M, Savadogo O, Paris J (2018) Hemicellulose based integrated forest biorefineries: implementation strategies. Ind Crop Prod 126:250–260. https://doi.org/10.1016/j.indcrop.2018.10.025

    Article  CAS  Google Scholar 

  9. Yuan Q, Zhang H, Qian Z, Yang X (2004) Pilot-plant production of xylo-oligosaccharides from corncob by steaming, enzymatic hydrolysis and nanofiltration. J Chem Technol Biotechnol 79:1073–1079. https://doi.org/10.1002/jctb.1071

    Article  CAS  Google Scholar 

  10. Pinales-Márquez CD, Rodríguez-Jasso RM, Araújo RG, Loredo-Treviño A, Nabarlatz D, Gullón B, Ruiz HA (2021) Circular bioeconomy and integrated biorefinery in the production of xylooligosaccharides from lignocellulosic biomass: a review. Ind Crop Prod 162:113274. https://doi.org/10.1016/j.indcrop.2021.113274

    Article  CAS  Google Scholar 

  11. Santibáñez L, Henríquez C, Corro-Tejeda R, Bernal S, Armijo B, Salazar O (2021) Xylooligosaccharides from lignocellulosic biomass: a comprehensive review. Carbohydr Polym 251:117118. https://doi.org/10.1016/j.carbpol.2020.117118

    Article  CAS  PubMed  Google Scholar 

  12. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production. A Review. Int J Mol Sci 9:1621–1651. https://doi.org/10.3390/ijms9091621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Özbek HN, Koçak Yanık D, Fadıloğlu S, Göğüş F (2021) Effect of microwave-assisted alkali pre-treatment on fractionation of pistachio shell and enzymatic hydrolysis of cellulose-rich residues. J Chem Technol Biotechnol 96:521–531. https://doi.org/10.1002/jctb.6569

    Article  CAS  Google Scholar 

  14. Álvarez C, González A, Negro MJ, Ballesteros I, Oliva JM, Sáez F (2017) Optimized use of hemicellulose within a biorefinery for processing high value-added xylooligosaccharides. Ind Crop Prod 99:41–48. https://doi.org/10.1016/j.indcrop.2017.01.034

    Article  CAS  Google Scholar 

  15. Messaoudi Y, Smichi N, Allaf T, Allaf K, Gargouri M (2015) Effect of instant controlled pressure drop pretreatment of lignocellulosic wastes on enzymatic saccharification and ethanol production. Ind Crop Prod 77:910–919. https://doi.org/10.1016/j.indcrop.2015.09.074

    Article  CAS  Google Scholar 

  16. Chadni M, Grimi N, Bals O, Ziegler-Devin I, Brosse N (2019) Steam explosion process for the selective extraction of hemicelluloses polymers from spruce sawdust. Ind Crop Prod 141:111757. https://doi.org/10.1016/j.indcrop.2019.111757

    Article  CAS  Google Scholar 

  17. Hamoud-Agha MM, Allaf K (2019) Instant controlled pressure drop (DIC) technology in food preservation: fundamental and industrial applications, food preservation and waste exploitation. In: Socaci SA, Farcaş AC, Aussenac T, Laguerre JC (eds.) Food preservation-from basics to advanced technologies IntechOpen. https://doi.org/10.5772/intechopen.83439

  18. Allaf K, Louka N, Bouvier JM, Parent F, Forget M (1993) Procede de traitement de produits biologiques en vue de la modification de leur texture, installations pour la mise en oeuvre d’un tel procede et produits ainsi realises. French patent no.930,9720. International extension no PCT/FR94/00975

  19. Iguedjtal T, Louka N, Allaf K (2008) Sorption isotherms of potato slices dried and texturized by controlled sudden decompression. J Food Eng 85:180–190. https://doi.org/10.1016/j.jfoodeng.2007.06.028

    Article  Google Scholar 

  20. Louka N, Allaf K (2002) New process for texturizing partially dehydrated biological products using controlled sudden decompression to the vacuum: application on potatoes. J Food Eng 65:3033–3038. https://doi.org/10.1111/j.1365-2621.2002.tb08855.x

    Article  Google Scholar 

  21. Smichi N, Messaoudi Y, Gelicus A, Allaf K, Gargouri M (2020) Enzymatic hydrolysis of instant controlled pressure drop pretreated Retama raetam for bioethanol production. Waste Biomass Valori 11:187–200. https://doi.org/10.1007/s12649-018-0366-y

    Article  CAS  Google Scholar 

  22. Sarip H, Hossain MS, Negm M, Azemi MNM, Allaf K (2016) In situ autohydrolysis for the glucose production from sago pith waste with DIC technology. Bioresources 11:9311–9324. https://doi.org/10.15376/biores.11.4.9311-9324

    Article  CAS  Google Scholar 

  23. Sutay Kocabaş D, Köle M, Yağcı S (2020) Development and optimization of hemicellulose extraction bioprocess from poppy (Papaver somniferum L.) stalks assisted by instant controlled pressure drop (DIC) pretreatment. Biocatal Agric Biotechnol 29:101793. https://doi.org/10.1016/j.bcab.2020.101793

    Article  Google Scholar 

  24. Hopa DY, Yılmaz N, Alagöz O, Dilek M, Helvacı A, Durupınar Ü (2016) Pyrolysis of poppy capsule pulp for bio-oil production. Waste Manag Res 34:1316–1321. https://doi.org/10.1177/0734242X16671800

    Article  CAS  PubMed  Google Scholar 

  25. AOAC (1998) Official Methods of Analysis, 17th edn. Association of Official Analytical Chemists, Gaithersburg, USA

    Google Scholar 

  26. Yağcı S, Evci T (2015) Effect of instant controlled pressure drop process on some physicochemical and nutritional properties of snacks produced from chickpea and wheat. Int J Food Sci Technol 50:1901–1910. https://doi.org/10.1111/ijfs.12843

    Article  CAS  Google Scholar 

  27. Zilliox C, Debeire P (1998) Hydrolysis of wheat straw by a thermostable endoxylanase: adsorption and kinetic studies. Enzym Microb Technol 22:58–63. https://doi.org/10.1016/S0141-0229(97)00105-1

    Article  CAS  Google Scholar 

  28. Myers R, Montgomery DC (2002) Response surface methodology: process and products optimization using designed experiments, 2nd edn. Wiley, New York

    Google Scholar 

  29. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618.

  30. Özbek HN, Koçak Yanık D, Fadıloğlu S, Göğüş F (2020) Ultrasound-assisted alkaline pre-treatment and its sequential combination with microwave for fractionation of pistachio shell. Renew Energy 157:637–646. https://doi.org/10.1002/jctb.6569

    Article  CAS  Google Scholar 

  31. Özbek HN, Fockink DH, Koçak Yanık D, Göğüş F, Łukasik RM (2018) The green biorefinery concept for the valorisation of pistachio shell by high-pressure CO2/H2O system. J Clean Prod 196:842–851. https://doi.org/10.1016/j.jclepro.2018.06.062

    Article  CAS  Google Scholar 

  32. Sutay Kocabaş D, Özben N (2014) Co-production of xylanase and xylooligosaccharides from lignocellulosic agricultural wastes. RSC Adv 4:26129–26139. https://doi.org/10.1039/C4RA02508C

    Article  Google Scholar 

  33. Xiao LP, Shi ZJ, Bai YY, Wang W, Zhang XM, Sun RC (2013) Biodegradation of lignocellulose by white-rot fungi: structural characterization of water-soluble hemicelluloses. Bioenerg Res 6:1154–1164. https://doi.org/10.1007/s12155-013-9302-y

    Article  CAS  Google Scholar 

  34. Hoşgün EZ (2020) One-pot hydrothermal conversion of poppy stalks over metal chloride catalysts. Biomass Conv Bioref 10:1–8. https://doi.org/10.1007/s13399-020-00682-5

    Article  CAS  Google Scholar 

  35. Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenerg Res 5:1043–1066. https://doi.org/10.1007/s12155-012-9208-0

    Article  CAS  Google Scholar 

  36. Hu Q, Su X, Tan L, Liu X, Wu A, Su D, Tian K, Xiong X (2013) Effects of a steam explosion pretreatment on sugar production by enzymatic hydrolysis and structural properties of reed straw. Biosci Biotechnol Biochem 77:2181–2187. https://doi.org/10.1271/bbb.130269

    Article  CAS  PubMed  Google Scholar 

  37. Besombes C, Berka-Zougali B, Allaf K (2010) Instant controlled pressure drop extraction of lavandin essential oils: fundamentals and experimental studies. J Chromatogr A 1217:6807–6815. https://doi.org/10.1016/j.chroma.2010.08.050

    Article  CAS  PubMed  Google Scholar 

  38. Allaf T, Tomao V, Ruiz K, Chemat F (2013) Instant controlled pressure drop technology and ultrasound assisted extraction for sequential extraction of essential oil and antioxidants. Ultrason Sonochem 20:239–246. https://doi.org/10.1016/j.ultsonch.2012.05.013

    Article  CAS  PubMed  Google Scholar 

  39. Romero-Cano LA, Gonzalez-Gutierrez LV, Baldenegro-Perez LA (2016) Biosorbents prepared from orange peels using Instant Controlled Pressure Drop for Cu (II) and phenol removal. Ind Crop Prod 84:344–349. https://doi.org/10.1016/j.indcrop.2016.02.027

    Article  CAS  Google Scholar 

  40. Mkaouar S, Bahloul N, Gelicus A, Allaf K, Kechaou N (2015) Instant controlled pressure drop texturing for intensifying ethanol solvent extraction of olive (Olea europaea) leaf polyphenols. Sep Purif Technol 145:139–146. https://doi.org/10.1016/j.seppur.2015.03.01410.1016/j.seppur.2015.03.014

    Article  CAS  Google Scholar 

  41. Rashidi S, Eikani MH, Ardjmand M (2018) Extraction of Hyssopus officinalis L. essential oil using instant controlled pressure drop process. J Chromatogr A 1579:9–19. https://doi.org/10.1016/j.chroma.2018.10.020

    Article  CAS  PubMed  Google Scholar 

  42. Eikani MH, Khandan N, Feyzi E (2019) Enhancing bio-oil extraction using instant controlled pressure drop texturing. Food Bioprod Process 117:241–249. https://doi.org/10.1016/j.fbp.2019.06.008

    Article  CAS  Google Scholar 

  43. Amor BB, Allaf K (2009) Impact of texturing using instant pressure drop treatment prior to solvent extraction of anthocynains from Malaysian Roselle (Hibiscus sabdariffa). Food Chem 115:820–825. https://doi.org/10.1016/j.foodchem.2008.12.094

    Article  CAS  Google Scholar 

  44. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93. https://doi.org/10.1016/j.rser.2013.06.033

    Article  CAS  Google Scholar 

  45. Werner K, Pommer L, Broström M (2014) Thermal decomposition of hemicelluloses. J Anal Appl Pyrolysis 110:130–137. https://doi.org/10.1016/j.jaap.2014.08.013

    Article  CAS  Google Scholar 

  46. Kamal IM, Sobolik V, Kristiawan M, Mounir SM, Allaf K (2008) Structure expansion of green coffee beans using instantaneous controlled pressure drop process. Innov Food Sci Emerg Technol 9:534–541. https://doi.org/10.1016/j.ifset.2008.01.004

    Article  Google Scholar 

  47. Chaula Z, Said M, John G, Manyele S, Mhilu C (2014) Modelling the suitability of pine sawdust for energy production via biomass steam explosion. Smart Grid Renew Energy 5:1–7. https://doi.org/10.4236/sgre.2014.51001

    Article  CAS  Google Scholar 

  48. Özüdoğru HMR, Nieder-Heitmann M, Haigh KF, Görgens JF (2019) Techno-economic analysis of product biorefineries utilizing sugarcane lignocelluloses: Xylitol, citric acid and glutamic acid scenarios annexed to sugar mills with electricity co-production. Ind Crop Prod 133:259–268. https://doi.org/10.1016/j.indcrop.2019.03.015

    Article  CAS  Google Scholar 

  49. Hutterer C, Schild G, Potthast A (2016) A precise study on effects that trigger alkaline hemicellulose extraction efficiency. Bioresour Technol 214:460–467. https://doi.org/10.1016/j.biortech.2016.04.114

    Article  CAS  PubMed  Google Scholar 

  50. Egüés I, Sanchez C, Mondragon I, Labidi J (2012) Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresour Technol 103:239–248. https://doi.org/10.1016/j.biortech.2011.09.139

    Article  CAS  PubMed  Google Scholar 

  51. Pierre G, Maache-Rezzoug Z, Sannier F, Rezzoug SA, Maugard T (2011) High-performance hydrolysis of wheat straw using cellulase and thermomechanical pretreatment. Process Biochem 46:2194–2200. https://doi.org/10.1016/j.procbio.2011.09.002

    Article  CAS  Google Scholar 

  52. Hijosa-Valsero M, Garita-Cambronero J, Paniagua-García AI, Díez-Antolínez R (2019) Tomato waste from processing industries as a feedstock for biofuel production. Bioenerg Res 12:1000–1011. https://doi.org/10.1007/s12155-019-10016-7

    Article  CAS  Google Scholar 

  53. Chapla D, Dholakiya S, Madamwar D, Shah A (2013) Characterization of purified fungal endoxylanase and its application for production of value added food ingredient from agroresidues. Food Bioprod Process 91:682–692. https://doi.org/10.1016/j.fbp.2013.08.005

    Article  CAS  Google Scholar 

Download references

Availability of Data and Material

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Code Availability

Not applicable

Funding

The Scientific and Technological Research Council of Turkey (TUBITAK) (Project No: 2170336) financially supported this study. The SEM analysis was performed in Karamanoğlu Mehmetbey University Scientific and Technological Research Application and Research Center (BİLTEM).

Author information

Authors and Affiliations

Authors

Contributions

Sibel Yağcı: conceptualization, methodology, investigation, resources, writing (review and editing), and supervision

Didem Sutay Kocabaş: conceptualization, methodology, investigation, resources, writing (review and editing), supervision, and project administration

Merve Köle: collecting data, investigation, and formal analysis

Hatice Neval Özbek: formal analysis, investigation, and writing (review and editing)

Corresponding author

Correspondence to Sibel Yağcı.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yağcı, S., Kocabaş, D.S., Köle, M. et al. Controlled Instant Pressure Drop (DIC) Pretreatment to Enhance Fractionation and Enzymatic Saccharification of Poppy Capsule Waste. Bioenerg. Res. 15, 426–438 (2022). https://doi.org/10.1007/s12155-021-10288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10288-y

Keywords

Navigation