Skip to main content
Log in

Separation of Vitexin and Iso-vitexin from Mung Bean Seed Coats Using a Three-Zone Simulated Moving Bed (SMB)

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Vitexin and iso-vitexin, potential bioactive compounds for nutraceutical or pharmaceutical applications, are natural phenolic compounds present in mung bean seed coats. These compounds could be extracted using ethanol-based solvent. Improving the purity of vitexin and iso-vitexin in the crude extract is important for efficient use. This work proposed a continuous system for the separation of vitexin and iso-vitexin based on isocratic liquid chromatography. The adsorption characteristics of individual compound was investigated via pulse injection and breakthrough experiments. The appropriate mobile phase was 18–82–2.5%v/v ethanol–water–acetic acid based on selectivity and resolution of the separation, toxicity of mobile phase, and pressure drop in the system using SUPELCOSIL LC-18 column as stationary phase. The adsorption parameters verified by adsorption–desorption experiments of a binary mixture of vitexin and iso-vitexin were used for designing a three-zone simulated moving bed (SMB) system for the separation both compounds. Finally, a response surface methodology (RSM) was used to optimize the operating conditions of the SMB. At the optimal conditions (maximized productivity was 0.3417 mg/L min), the switching time was 16 min and the flowrate ratio in sections I, II and III was 3.400, 2.920, and 3.150, respectively. The purity of vitexin and iso-vitexin was 98.46% and 98.44%, respectively.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

\(AARD\) :

Average absolute relative deviation (%)

\(C_{F,i}\) :

Feed concentration of component \(i\) (g/L)

\(C_{i}\) :

Concentration of component \(i\) in fluid phase (g/L)

\(D_{ax,i}\) :

Axial dispersion coefficient (m2/s)

\(D_{eff,i}\) :

Effective diffusivity (cm2/s)

\(D_{m,i}\) :

The contribution of molecular diffusion coefficient (cm2/s)

\(d_{p}\) :

Particle diameter (cm)

\(H_{i}\) :

Isotherm slope

\(k_{f,ij}\) :

Convective mass transfer coefficient (cm/s)

\(k_{LDF,i}\) :

Linear driving force coefficient (1/s)

\(K_{LDF,i}\) :

The global linear driving force mass transfer coefficient (1/s)

\(L_{C}\) :

Column length (m)

\(M_{f}\) :

Molecular weight of the solvent (g/mol)

\(m_{k}\) :

Dimensionless flow rate in each section k of SMB unit

\(NDP\) :

Number of data points

\(Pe\) :

The Péclet number

\(Prod.\) :

Productivity (mg/L min)

\(PurR\) :

Purities of Raffinate (%)

\(PurX\) :

Purities of extract (%)

\(\overline{q}_{i}\) :

Concentration of component \(i\) in solid phase (g/L)

\(q_{i}^{*}\) :

Solid phase concentration in equilibrium with fluid bulk (g/L)

\(Q_{k}\) :

Internal flow rate (mL/min) in section k of SMB unit

\(Re\) :

Reynolds number

\(Rec\) :

Recovery (%)

\(R_{p}\) :

The adsorbent particle radius (cm)

\(R_{S}\) :

Resolution

\(Sh\) :

Sherwood number

\(t\) :

Time (s)

\(T\) :

Absolute temperature (K)

\(t^{*}\) :

Switching time in SMB (s)

\(t_{R,i}\) :

Retention time (min)

\(u\) :

Superficial velocity (m/min)

\(u_{{\text{int}}}\) :

Interstitial velocity of fluid (m/s)

\(W_{1/2,i}\) :

Arithmetic mean of two peak widths

\(V_{bp,i}\) :

The solute molar volume at its normal boiling point (cm3/mol)

\(V_{C}\) :

Volume of each column (mL)

\(V_{extra}\) :

Extra volume of connecting tubes (mL)

\(z\) :

Axial coordinate (m)

\(\theta\) :

Dimensionless form of time

\(\chi\) :

Dimensionless form of coordinate

\(\gamma\) :

Dimensionless form of bed porosity

\(\psi\) :

Dimensionless form of mass balance in fluid phase

\(\alpha\) :

Selectivity

\(\alpha_{i}\) :

Dimensionless of mass balance in solid phase

\(\varepsilon_{b}\) :

Bed porosity

\(\varepsilon_{T}\) :

Total porosity

\(\varepsilon_{p}\) :

Particle porosity

\(\phi\) :

Dimensionless association factor for the solvent

\(\mu_{f}\) :

Solvent viscosity (cP)

\(\Omega\) :

Geometric factor

\(\tau\) :

Tortuosity factor

\(\rho_{f}\) :

Solvent density (mg/mL)

\(A\) :

More retained component

\(B\) :

Less retained component

\(E\) :

Eluent stream

\(F\) :

Feed stream

\(i\) :

Component

\(I,II,III\) :

Section in SMB unit

\(ISV\) :

Iso-vitexin

\(k\) :

Section

\(R\) :

Raffinate stream

\(VIT\) :

Vitexin

\(X\) :

Extract stream

BCG:

Bio Circular and Green economy

CCC:

Counter Current Chromatography

CSS:

Cyclic Steady State

LDF:

Linear Driving Force

NSTDA:

Nation Science and Technology Development Agency

Prep-LC:

Preparative Liquid Chromatography

RSM:

Response Surface Methodology

SMB:

Simulated Moving Bed

TMB:

True Moving Bed

References

  1. National Science and Technology Development Agency.: NSTDA-KU-Ban Don Wai Community established 'KUML Mung Bean Seed Production Center', which is first quality seed production source and forward planting throughout Thailand. https://www.nstda.or.th/en/news/news-years-2021/1265-community-mung-bean-seed-production-center-launched-in-uthai-thani.html (2021)

  2. Dahiya, P.K., et al.: Mung bean: technological and nutritional potential. Crit. Rev. Food Sci. Nutr. 55(5), 670–688 (2015)

    Article  Google Scholar 

  3. Post, B.: BCG model to raise output. Economy to benefit from new technology 2019. [cited 2021 10 May]. https://www.bangkokpost.com/business/1804344/bcg-model-to-raise-output (2019)

  4. Balasundram, N., Sundram, K., Samman, S.: Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 99(1), 191–203 (2006)

    Article  Google Scholar 

  5. Gioxari, A., et al.: Phenolic compounds: bioavailability and health effects. In: Caballero, B., Finglas, P.M., Toldrá, F. (eds.) Encyclopedia of Food and Health, pp. 339–345. Academic Press, Oxford (2016)

    Chapter  Google Scholar 

  6. Gan, R.-Y., et al.: Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT 73, 168–177 (2016)

    Article  Google Scholar 

  7. Li, A.-P., et al.: Chemical comparison of coat and kernel of mung bean by nuclear magnetic resonance-based metabolic fingerprinting approach. Spectrosc. Lett. 49(3), 217–224 (2016)

    Article  Google Scholar 

  8. Hou, D., et al.: Mung bean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 11(6), 1238 (2019)

    Article  Google Scholar 

  9. Uribe, E., et al.: Extraction techniques for bioactive compounds and antioxidant capacity determination of chilean papaya (Vasconcellea pubescens) Fruit. J. Chem. 2015, 1–8 (2015)

    Article  Google Scholar 

  10. Koçak, E., Pazir, F.: Effect of extraction methods on bioactive compounds of plant origin. Turk. J. Agric. Food Sci. Technol. 6, 663 (2018)

    Google Scholar 

  11. Kang, I., et al.: Effects of mung bean (Vigna radiata L.) ethanol extracts decrease proinflammatory cytokine-induced lipogenesis in the KK-Ay diabese mouse model. J. Med. Food 18(8), 841–849 (2015)

    Article  Google Scholar 

  12. Cao, D., et al.: Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PLoS ONE 6(6), e21071 (2011)

    Article  Google Scholar 

  13. Hashiguchi, A., et al.: Mung bean (Vigna radiata L.) coat extract modulates macrophage functions to enhance antigen presentation: a proteomic study. J. Proteomics 161, 26–37 (2017)

    Article  Google Scholar 

  14. Zhou, Y., et al.: Optimization of ultrasound-assisted extraction of antioxidants from the mung bean coat. Molecules (Basel, Switz) 22(4), 638 (2017)

    Article  Google Scholar 

  15. Galanakis, C. et al.: A knowledge base for the recovery of natural phenols with different solvents. Int. J. Food Prop. 2011 (2011)

  16. Reungoat, V., et al.: Optimization of an ethanol/water-based sinapine extraction from mustard bran using Response Surface Methodology. Food Bioprod. Process. 122, 322–331 (2020)

    Article  Google Scholar 

  17. Das, R., Bhattacharjee, C., Ghosh, S.: Preparation of mustard (Brassica juncea L.) protein isolate and recovery of phenolic compounds by ultrafiltration. Ind. Eng. Chem. Res. 48, 4939 (2009)

    Article  Google Scholar 

  18. Xiao, J., et al.: Advance on the flavonoid C-glycosides and health benefits. Crit. Rev. Food Sci. Nutr. 56(Suppl 1), S29-45 (2016)

    Article  Google Scholar 

  19. Fu, Y., et al.: Preparative separation of vitexin and isovitexin from pigeonpea extracts with macroporous resins. J. Chromatogr. A 1139(2), 206–213 (2007)

    Article  Google Scholar 

  20. Fu, Y., et al.: Determination of vitexin and isovitexin in pigeonpea using ultrasonic extraction followed by LC-MS. J. Sep. Sci. 31(2), 268–275 (2008)

    Article  Google Scholar 

  21. Melchert, T.E., Alston, R.E.: Flavonoids from the moss Mnium affine Bland. Science 150(3700), 1170 (1965)

    Article  Google Scholar 

  22. Basile, A., et al.: Effects of seven pure flavonoids from mosses on germination and growth of Tortula muralis HEDW. (Bryophyta) and Raphanus sativus L. (Magnoliophyta). Phytochemistry 62, 1145–51 (2003)

    Article  Google Scholar 

  23. Zucolotto, S., et al.: Analysis of C-glycosyl flavonoids from South AmericanPassiflora species by HPLC-DAD and HPLC–MS. Phytochem. Anal. PCA 23, 232–239 (2012)

    Article  Google Scholar 

  24. Pereira, C., Yariwake, J., McCullagh, M.: Distinction of the C-glycosylfavone isomer pairs orientin/isoorientin and vitexin/isovitexin using HPLC-MS exact mass measurement and in-source CID. Phytochem. Anal. PCA 16, 295–301 (2005)

    Article  Google Scholar 

  25. Wang, J., et al.: Development and validation of an HPTLC method for simultaneous quantitation of isoorientin, isovitexin, orientin, and vitexin in bamboo-leaf flavonoids. J. AOAC Int. 93, 1376–1383 (2010)

    Article  Google Scholar 

  26. Lee, H., et al.: The compound isolated from the leaves of Phyllostachys nigra protects oxidative stress-induced retinal ganglion cells death. Food Chem. Toxicol. 48, 1721–1727 (2010)

    Article  Google Scholar 

  27. Moheb, A., et al.: Changes in wheat leaf phenolome in response to cold acclimation. Phytochemistry 72, 2294–2307 (2011)

    Article  Google Scholar 

  28. Ginwala, R., et al.: Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 8(2), 35 (2019)

    Article  Google Scholar 

  29. He, M., et al.: A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115, 74–85 (2016)

    Article  Google Scholar 

  30. Singh, B., et al.: Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res. Int. 101, 1–16 (2017)

    Article  Google Scholar 

  31. Choi, H., et al.: Vitexin, an HIF-1α inhibitor, has anti-metastatic potential in PC12 cells. Mol. Cells 22, 291–299 (2007)

    Google Scholar 

  32. Yang, S.-H., et al.: The novel p53-dependent metastatic and apoptotic pathway induced by vitexin in human oral cancer OC2 cells. Phytother. Res. PTR 27, 1154 (2013)

    Article  Google Scholar 

  33. Zhang, J., et al.: Studies on the active components and antioxidant activities of the extracts of Mimosa pudica Linn. from southern China. Pharmacogn. Mag. 7, 35–9 (2011)

    Article  Google Scholar 

  34. An, F., et al.: Antioxidant effects of the orientin and vitexin in Trollius chinensis Bunge in D-galactose-aged mice. Neural Regen. Res. 7, 2565–2575 (2012)

    Google Scholar 

  35. Borghi, S., et al.: Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J. Nat. Prod. 76, 1141 (2013)

    Article  Google Scholar 

  36. Rosa, S., et al.: Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway. Phytomedicine 23, 9 (2015)

    Article  Google Scholar 

  37. Dong, L.-Y., et al.: Cardioprotection of vitexin on myocardial ischemia/reperfusion injury in rat via regulating inflammatory cytokines and MAPK pathway. Am. J. Chin. Med. 41, 1251–1266 (2013)

    Article  Google Scholar 

  38. Lin, C.-M., et al.: Isovitexin suppresses lipopolysaccharide-mediated inducible nitric oxide synthase through inhibition of NF-kappa B in mouse macrophages. Planta Med. 71, 748–753 (2005)

    Article  Google Scholar 

  39. Demir Özkay, Ü., Can, Ö.D.: Anti-nociceptive effect of vitexin mediated by the opioid system in mice. Pharmacol. Biochem. Behav. 109, 23 (2013)

    Article  Google Scholar 

  40. Gorzalczany, S., et al.: Antinociceptive activity of ethanolic extract and isolated compounds of Urtica circularis. J. Ethnopharmacol. 134, 733–738 (2011)

    Article  Google Scholar 

  41. Choi, J., et al.: Effects of C-glycosylation on anti-diabetic, anti-Alzheimer’s disease and anti-inflammatory potential of apigenin. Food Chem. Toxicol. 64, 27 (2013)

    Article  Google Scholar 

  42. Je, H., et al.: The inhibitory effect of vitexin on the agonist-induced regulation of vascular contractility. Pharmazie 69, 224–228 (2014)

    Google Scholar 

  43. Gilani, A.-U., et al.: Antispasmodic effects of rooibos tea (Aspalathus linearis) is mediated predominantly through K+-channel activation. Basic Clin. Pharmacol. Toxicol. 99, 365–373 (2006)

    Article  Google Scholar 

  44. Ragone, M., et al.: The spasmolytic effect of Aloysia citriodora, Palau (South American cedrón) is partially due to its vitexin but not isovitexin on rat duodenums. J. Ethnopharmacol. 113, 258–266 (2007)

    Article  Google Scholar 

  45. Min, J.-W., et al.: Vitexin reduces hypoxia–ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model. Neuropharmacology 99, 38 (2015)

    Article  Google Scholar 

  46. Can, Ö.D., Demir Özkay, Ü., Üçel, U.: Anti-depressant-like effect of vitexin in BALB/c mice and evidence for the involvement of monoaminergic mechanisms. Eur. J. Pharmacol. 699, 250 (2012)

    Article  Google Scholar 

  47. Krcatović, E., et al.: Inibition of tobacco mosaic virus infection by quercetin and vitexin. Acta Virol. 52, 119–124 (2008)

    Google Scholar 

  48. Li, Y., et al.: Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. J. Ethnopharmacol. 79, 365–368 (2002)

    Article  Google Scholar 

  49. Luz, D.A., et al.: Adsorptive separation of fructose and glucose from an agroindustrial waste of cashew industry. Bioresour. Technol. 99(7), 2455–2465 (2008)

    Article  Google Scholar 

  50. Borges da Silva, E.A., et al.: Analysis of the high-fructose syrup production using reactive SMB technology. Chem. Eng. J. 118(3), 167–181 (2006)

    Article  Google Scholar 

  51. Zhang, Q.-W., Lin, L.-G., Ye, W.-C.: Techniques for extraction and isolation of natural products: a comprehensive review. Chin. Med. 13, 20 (2018)

    Article  Google Scholar 

  52. Imamoglu, S.: Simulated Moving Bed Chromatography (SMB) for application in bioseparation. Adv. Biochem. Eng. Biotechnol. 76, 211–231 (2002)

    Google Scholar 

  53. Yao, C., et al.: Construction of an asynchronous three-zone simulated-moving-bed chromatography and its application for the separation of vanillin and syringaldehyde. Chem. Eng. J. 331, 644–651 (2018)

    Article  Google Scholar 

  54. Dapremont, O.: Use of industrial scale chromatography in pharmaceutical manufacturing. Compr. Org. Synth. 9, 181–206 (2014)

    Article  Google Scholar 

  55. Fábryová, T., et al.: Purification of lutein from the green microalgae Chlorella vulgaris by integrated use of a new extraction protocol and a multi-injection high performance counter-current chromatography (HPCCC). Algal Res. 41, 101574 (2019)

    Article  Google Scholar 

  56. Gottschlich, N., Kasche, V.: Purification of monoclonal antibodies by simulated moving-bed chromatography. J. Chromatogr. A 765(2), 201–206 (1997)

    Article  Google Scholar 

  57. Gong, Y., et al.: The applicability of high-speed counter current chromatography to the separation of natural antioxidants. J. Chromatogr. A 1623, 461150 (2020)

    Article  Google Scholar 

  58. Aniceto, J., Cardoso, S., Silva, C.: General optimization strategy of simulated moving bed units through design of experiments and response surface methodologies. Comput. Chem. Eng. 90, 161–170 (2016)

    Article  Google Scholar 

  59. Aniceto, J.P.S., Silva, C.M.: Simulated moving bed strategies and designs: from established systems to the latest developments. Sep. Purif. Rev. 44(1), 41–73 (2015)

    Article  Google Scholar 

  60. Aniceto, J.P.S., et al.: Design and optimization of a simulated moving bed unit for the separation of betulinic, oleanolic and ursolic acids mixtures: experimental and modeling studies. Sep. Purif. Technol. 192, 401–411 (2018)

    Article  Google Scholar 

  61. Pais, L.S., Loureiro, J.M., Rodrigues, A.E.: Modeling strategies for enantiomers separation by SMB chromatography. AIChE J. 44(3), 561–569 (1998)

    Article  Google Scholar 

  62. Yao, C., et al.: Construction of an asynchronous three-zone simulated-moving-bed chromatography and its application for the separation of vanillin and syringaldehyde. Chem. Eng. J. 331, 644 (2017)

    Article  Google Scholar 

  63. Edwards, M.F., Richardson, J.F.: The correlation of axial dispersion data. Can. J. Chem. Eng. 48(4), 466–467 (1970)

    Article  Google Scholar 

  64. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  65. Wilke, C.R., Chang, P.: Correlation of diffusion coefficients in dilute solutions. AIChE J. 1(2), 264–270 (1955)

    Article  Google Scholar 

  66. Technology, N.I.o.S.a. 2018 7/7/2020. http://doi.org/https://doi.org/10.18434/T4D303.

  67. Oliveira, E.L.G., Silvestre, A.J.D., Silva, C.M.: Review of kinetic models for supercritical fluid extraction. Chem. Eng. Res. Des. 89(7), 1104–1117 (2011)

    Article  Google Scholar 

  68. Mun, S.: Strategy of rearranging the port locations in a three-zone simulated moving bed chromatography for binary separation with linear isotherms. J. Chromatogr. A 1230, 100–109 (2012)

    Article  Google Scholar 

  69. Jeon, Y.-J., Park, M.B., Kim, I.-H.: L-Ribose from L-arabinose by epimerization and its purification by 3-zone simulated moving bed chromatography. Bioprocess Biosyst. Eng. 33(1), 87 (2009)

    Article  Google Scholar 

  70. Song, S.-M., Kim, I.H.: A three-zone simulated moving-bed for separation of immunoglobulin Y. Korean J. Chem. Eng. 30(8), 1527–1532 (2013)

    Article  Google Scholar 

  71. Sá Gomes, P., Minceva, M., Rodrigues, A.E.: Simulated moving bed technology: old and new. Adsorption 12(5–6), 375–392 (2006)

    Article  Google Scholar 

  72. Schulte, M., Britsch, L., Strube, J.: Continuous preparative liquid chromatography in the downstrem processing of biotechnological products. Acta Biotechnol. 20(1), 3–15 (2000)

    Article  Google Scholar 

  73. Rajendran, A., Paredes, G., Mazzotti, M.: Simulated moving bed chromatography for the separation of enantiomers. J. Chromatogr. A 1216(4), 709–738 (2009)

    Article  Google Scholar 

  74. Delgado, J.A., et al.: Modeling of the separation of lactic acid from an aqueous mixture by adsorption on polyvinylpyridine resin and desorption with methanol. Sep. Purif. Technol. 200, 307–317 (2018)

    Article  Google Scholar 

  75. Wei, B., Wang, S.: Separation of eicosapentaenoic acid and docosahexaenoic acid by three-zone simulated moving bed chromatography. J. Chromatogr. A 1625, 461326 (2020)

    Article  Google Scholar 

  76. Storti, G., et al.: Robust design of binary countercurrent adsorption separation processes. AIChE J. 39(3), 471–492 (1993)

    Article  Google Scholar 

  77. Radeke, K.H., Ortlieb, H.J., Gelbin, D.: Evaluating breakthrough curves with the method of moments for systems obeying the Langmuir isotherm. Chem. Eng. Sci. 36(1), 11–17 (1981)

    Article  Google Scholar 

  78. Levenspiel, O.: Chemical Reaction Engineering, Octave Levenspiel, p. 578. Wiley, New York (1972)

    Google Scholar 

  79. Levenspiel, O.: Chemical reaction engineering. Octave Levenspiel. AIChE J. 19(1), 206–207 (1973)

    Google Scholar 

  80. Nobre Gonçalves, C., et al., Simulated moving bed operating conditions for Fructo-oligosaccharides separation. In: Better Earth Possible, pp. 54–74. Principal, St. Joseph’s College (2016)

  81. Rodrigues, A., et al.: Simulated Moving Bed Technology: Principles, Design and Process Applications. Elsevier, Oxford (2015)

    Google Scholar 

  82. Seidel-Morgenstern, A.: Experimental determination of single solute and competitive adsorption isotherms. J. Chromatogr. A 1037(1), 255–272 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Master-degree Innovation Development Grant, Faculty of Engineering, Kasetsart University, Thailand [MS 62/10/CHEM/Innovation]. Financial support from the National Research Council of Thailand (NRCT) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attasak Jaree.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maneewan, S., Tangpromphan, P. & Jaree, A. Separation of Vitexin and Iso-vitexin from Mung Bean Seed Coats Using a Three-Zone Simulated Moving Bed (SMB). Waste Biomass Valor 12, 6601–6618 (2021). https://doi.org/10.1007/s12649-021-01493-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01493-z

Keywords

Navigation