Skip to main content

Advertisement

Log in

Effect of the solvent nature on the structure and performance of poly(amide-imide) ultrafiltration membranes

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The study covers the fundamental relationships between the nature of aprotic polar solvents [N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMA), N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO)] used for casting solution preparation and the structure and performance of poly(amide-imide) (PAI) ultrafiltration membranes. It was found that the distinctive feature of the ternary systems PAI-poly(ethylene glycol) (PEG-400, Mn = 400 g mol−1) solvent is gel formation upon the increase in PEG-400 concentration in the solution. The PEG-400 addition to the casting solution was shown to increase pure water flux of the PAI membranes prepared from the casting solutions in different solvents. However, different patterns of the change of pure water flux when gel point is exceeded in PAI-PEG-400-solvent system were revealed. The PAI membranes obtained from the ternary systems PAI-PEG-400-solvent were found to combine high pure water flux at P = 0.1 MPa (130 L m−2 h−1 for DMSO, 120 L m−2 h−1 for DMA and 70 L m−2 h−1 for NMP) and high poly(vinylpyrrolidone) (PVP) rejection coefficients: 98–99% for PVP with Mn = 40000 g mol−1 and 86–95% for PVP with Mn = 10000 g mol−1. SEM studies reveal the significant difference in the PAI membrane structure when different solvents are used for casting solution preparation. The structure of the membranes obtained from 20 wt% PAI solutions in NMP and DMA consists of the thin selective layer supported by substructure pierced by elongated macrovoids. Meanwhile, when DMSO and DMF are used as solvents the addition of PEG-400 yields the suppression of macrovoid formation and anisotropic sponge-like membrane structure is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Rasheva Z, Sorochynska L, Grishchuk S, Friedrich K (2015) Effect of the solvent type and polymerization conditions on the curing kinetics, thermal and viscoelastic performance of poly (amide-imide) resins. Express Polym Lett 9(3):196–210. https://doi.org/10.3144/expresspolymlett.2015.21

    Article  CAS  Google Scholar 

  2. Kosuri MR, Koros WJ (2008) Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide–imide polymer, for high-pressure CO2 separations. J Membr Sci 320(1–2):65–72. https://doi.org/10.1016/j.memsci.2008.03.062

    Article  CAS  Google Scholar 

  3. Rownaghi AA, Bhandari D, Burgess SK, Mikkilineni DS (2017) Effects of coating solvent and thermal treatment on transport and morphological characteristics of PDMS/Torlon composite hollow fiber membrane. J Appl Polym Sci 134(42):45418–45518. https://doi.org/10.1002/APP.45418

    Article  Google Scholar 

  4. Peng N, Chung TS (2008) The effects of spinneret dimension and hollow fiber dimension on gas separation performance of ultra-thin defect-free Torlon® hollow fiber membranes. J Membr Sci 310(1–2):455–465. https://doi.org/10.1016/j.memsci.2007.11.018

    Article  CAS  Google Scholar 

  5. Peng N, Chung TS, Li KY (2009) The role of additives on dope rheology and membrane formation of defect-free Torlon® hollow fibers for gas separation. J Membr Sci 343(1–2):62–72. https://doi.org/10.1016/j.memsci.2009.07.010

    Article  CAS  Google Scholar 

  6. Dibrov G, Ivanov M, Semyashkin M, Sudin V, Kagramanov G (2018) High-pressure aging of asymmetric Torlon® hollow fibers for helium separation from natural gas. Fibers 6:83. https://doi.org/10.3390/fib6040083

    Article  CAS  Google Scholar 

  7. Babu VP, Koros WJ (2018) The role of polyvinylpyrrolidone in forming open-porous, macrovoid-free mixed matrix sorbents from Torlon, a polyamide-imide polymer. Polym Eng Sci 58(11):2106–2114. https://doi.org/10.1002/pen.24823

    Article  CAS  Google Scholar 

  8. Li SF, Labreche Y, Lively RP, Lee JS, Jones CW, Koros JW (2014) Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture. Polymer 55(6):1341–1346. https://doi.org/10.1016/j.polymer.2013.11.040

    Article  CAS  Google Scholar 

  9. Qiu W, Kosuri M, Zhou F, Koros JW (2009) Dehydration of ethanol–water mixtures using asymmetric hollow fiber membranes from commercial polyimides. J Membr Sci 327(1–2):96–103. https://doi.org/10.1016/j.memsci.2008.11.029

    Article  CAS  Google Scholar 

  10. Wang Y, Goh SH, ChungTS Na P (2009) Polyamide-imide/polyetherimide dual-layer hollow fiber membranes for pervaporation dehydration of C1–C4 alcohols. J Membr Sci 326(1):222–233. https://doi.org/10.1016/j.memsci.2008.10.005

    Article  CAS  Google Scholar 

  11. Chafin R, Lee JS, Koros WJ (2010) Effects of casting and post casting annealing on xylene isomer transport properties of Torlon® 4000T films. Polymer 51(15):3462–3471. https://doi.org/10.1016/j.polymer.2010.05.028

    Article  CAS  Google Scholar 

  12. Li J, Labreche Y, Wang N, Ji S, An Q (2018) PDMS/ZIF-8 coating polymeric hollow fiber substrate for alcohol permselective pervaporation membranes. Chin J Chem Eng 27(10):2376–2382. https://doi.org/10.1016/j.cjche.2018.12.011

    Article  Google Scholar 

  13. Hua D, Chung TS (2015) Universal surface modification by aldehydes on polymeric membranes for isopropanol dehydration via pervaporation. J Membr Sci 492:197–208. https://doi.org/10.1016/j.memsci.2015.05.056

    Article  CAS  Google Scholar 

  14. Teoh MM, Chung TS, Wang KY, Guiver MD (2008) Exploring Torlon/P84 co-polyamide-imide blended hollow fibers and their chemical cross-linking modifications for pervaporation dehydration of isopropanol. Sep Purif Technol 61:404–413. https://doi.org/10.1016/j.seppur.2007.12.002

    Article  CAS  Google Scholar 

  15. Higuchi A, Yoshikawa M, Guiver MD, Robertson GP (2005) Vapor permeation and pervaporation of aqueous 2-propanol solutions through the Torlon® poly(amide imide) membrane. Sep Sci Technol 40:2697–2707. https://doi.org/10.1080/01496390500285311

    Article  CAS  Google Scholar 

  16. Jang HY, Johnson JR, Ma Y, Mathias R, Bhandari DA, Lively RP (2019) Torlon® hollow fiber membranes for organic solvent reverse osmosis separation of complex aromatic hydrocarbon mixtures. AIChE J. https://doi.org/10.1002/aic.16757

    Article  Google Scholar 

  17. Sun SP, Wang KY, Peng N, Hatton TA, Chung TS (2010) Novel polyamide-imide/cellulose acetate dual-layer hollow fiber membranes for nanofiltration. J Membr Sci 363(1–2):232–242. https://doi.org/10.1016/j.memsci.2010.07.038

    Article  CAS  Google Scholar 

  18. Grosso V, Vuono D, Bahattab MA, Profio GD, Curcio E, Al-Jilil SA, Alsubaie F, Alfife M, Nagy JB, Drioli E, Fontananova E (2014) Polymeric and mixed matrix polyimide membranes. Sep Purif Technol 132:684–696. https://doi.org/10.1016/j.seppur.2014.06.023

    Article  CAS  Google Scholar 

  19. Cihanoğlu A, Altinkaya SA (2018) A facile approach for preparation of positively charged nanofiltration membranes by in-situ crosslinking between polyamide-imide and polyethylenimine. Sep Purif Technol 207:353–362. https://doi.org/10.1016/j.seppur.2018.06.020

    Article  CAS  Google Scholar 

  20. Lim SK, Setiawan L, Bae TH, Wang R (2016) Polyamide-imide hollow fiber membranes crosslinked with amine-appended inorganic networks for application in solvent-resistant nanofiltration under low operating pressure. J Membr Sci 501:152–160. https://doi.org/10.1016/j.memsci.2015.11.016

    Article  CAS  Google Scholar 

  21. Han G, Liu JT, Lu KJ, Chung TS (2018) Advanced anti-fouling membranes for osmotic power generation from wastewater via pressure retarded osmosis (PRO). Environ Sci Technol 52:6686–6694. https://doi.org/10.1021/acs.est.7b05933

    Article  CAS  Google Scholar 

  22. Setiawan L, Wang R, Li K, Fane AG (2011) Fabrication of novel poly(amide–imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer. J Membr Sci 369(1–2):196–205. https://doi.org/10.1016/j.memsci.2010.11.067

    Article  CAS  Google Scholar 

  23. Setiawan L, Wang R, Tan S, Shi L, Fane AG (2013) Fabrication of poly(amide-imide)-polyethersulfone dual layer hollow fiber membranes applied in forward osmosis by combined polyelectrolyte cross-linking and depositions. Desalination 312:99–106. https://doi.org/10.1016/j.desal.2012.10.032

    Article  CAS  Google Scholar 

  24. Tager AA, Botvinnik GO (1974) The activation parameters of viscous flow and the structure of concentrated polymer solutions. Polym Sci USSR 16(6):1483–1488. https://doi.org/10.1016/0032-3950(74)90411-0

    Article  Google Scholar 

  25. Tager AA (1974) Effect of solvent quality on the viscosity of flexible-chain and rigid-chain polymers in a wide range of concentrations. Rheol Acta 13(2):323–332. https://doi.org/10.1007/BF01520895

    Article  CAS  Google Scholar 

  26. Lou Y, Lei Q, Wu G (2019) Research on polymer viscous flow activation energy and non-Newtonian index model based on feature size. Adv Polym Tech. https://doi.org/10.1155/2019/1070427

    Article  Google Scholar 

  27. Plisko TV, Bildyukevich AV, Karslyan YA, Ovcharova AA, Volkov VV (2018) Development of high flux ultrafiltration polyphenylsulfone membranes applying the systems with upper and lower critical solution temperatures: effect of polyethylene glycol molecular weight and coagulation bath temperature. J Membr Sci 565:266–280. https://doi.org/10.1016/j.memsci.2018.08.038

    Article  CAS  Google Scholar 

  28. Bildyukevich AV, Plisko TV, Isaichykova YA, Ovcharova AA (2018) Preparation of high-flux ultrafiltration polyphenylsulfone membranes. Petrol Chem 58(9):747–759. https://doi.org/10.1134/S0965544118090050

    Article  CAS  Google Scholar 

  29. Plisko TV, Penkova AV, Burts KS, Bildyukevich AV, Dmitrenko ME, Melnikova GB, Atta RR, Mazur AS, Zolotarev AA, Missyul AB (2019) Effect of Pluronic F127 on porous and dense membrane structure formation via non-solvent induced and evaporation induced phase separation. J Membr Sci 580:336–349. https://doi.org/10.1016/j.memsci.2019.03.028

    Article  CAS  Google Scholar 

  30. Lin KY, Wang DM, Lai JY (2002) Nonsolvent-induced gelation and its effect on membrane morphology. Macromolecules 35:6607–6697. https://doi.org/10.1021/ma020073y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with a financial support from Belarussian Republican Foundation for Fundamental Research (Project №X18YKA-021) and National Academy of Sciences of Ukraine (Project № 0118U006245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Plisko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bildyukevich, A.V., Plisko, T.V., Shustikov, A.A. et al. Effect of the solvent nature on the structure and performance of poly(amide-imide) ultrafiltration membranes. J Mater Sci 55, 9638–9654 (2020). https://doi.org/10.1007/s10853-020-04714-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04714-3

Navigation