Skip to main content
Log in

Comprehensive Study of Hydrothermal Extraction of Pectin From Sugar Beet Pulp

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

In this work one-stage, no presence of acidic catalyst hydrothermal extraction of pectin from sugar beet pulp (SBP) as a batch process was investigated, leading to increasing the value of this by-product of sugar beet industry.

Methods

The comprehensive study of the effect of the extraction temperature and the extraction time on the yield and composition of the pectin-enriched products, the water soluble product fractions and the water insoluble product fractions, were used that are feasible for industrial upscaling.

Results

It was shown that the highest yield of satisfactory purity of pectin extract (136.3 g kg−1) was obtained at a temperature of 120 °C and a holding time of 20 min. Both further increase of the extraction temperature and extending extraction time favor the occurrence of partial hydrothermolysis of pectin and hemicellulose contained in the SBP, leading to the production of uronic acids, monosaccharides, carboxylic acids and furfurals. In the applied extraction conditions, other components of the SBP: cellulose, lignin and protein did not undergo depolymerization and were still present in the solid post-extraction residue.

Conclusions

This work provides an important method for the recovery of pectin from SBP using environmentally friendly technique and should help to facilitate further studies to develop a new process for the hydrothermal production of pectin from waste biomass.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Mirabella, N., Castellani, V., Sala, S.: Current options for the valorization of food manufacturing waste: a review. J. Clean Prod. 65, 28–41 (2014)

    Article  Google Scholar 

  2. Gonzalez-Garcia, S., Gullón, B., Moreira, M.T.: Environmental assessment of biorefinery processes for the valorization of lignocellulosic wastes into oligosaccharides. J. Clean Prod. 199, 840–848 (2017)

    Google Scholar 

  3. Tejada-Ortigoza, V., Garcia-Amezquita, L.E., Serna-Saldívar, S.O., Welti-Chanes, J.: Advances in the functional characterization and extraction processes of dietary fiber. Food Eng. Rev. 8, 251–271 (2016)

    Article  Google Scholar 

  4. Adetunji, L.R., Adekunle, A., Orsat, V., Raghavan, V.: Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocolloid. 62, 239–250 (2017)

    Article  Google Scholar 

  5. Naqash, F., Masoodi, F.A., Rather, S.A., Wani, S.M., Gani, A.: Emerging concepts in the nutrical and functional properties of pectin—a review. Carbohyd. Polym. 168, 227–239 (2017)

    Article  Google Scholar 

  6. Noreen, A., Nazli, Z.H., Akram, J., Rasul, I., Mansha, A., Yaqoob, N., Iqbald, R., Tabasum, S., Zuber, M., Zia, K.M.: Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int. J. Biol. Macromol. 101, 254–272 (2017)

    Article  Google Scholar 

  7. Mohanty, D., Misra, S., Mohapatra, S., Sahu, P.S.: Prebiotics and synbiotics: Recent concepts in nutrition. Food Bioscience. 26, 152–160 (2018)

    Article  Google Scholar 

  8. Gullón, B., Gómez, B., Martınez-Sabajanes, M., Parajo, J.C., Alonso, J.L.: Pectic oligosaccharides: Manufacture and functional properties. Trends Food Sci. Tech. 30, 153–161 (2013)

    Article  Google Scholar 

  9. Gómez, B., Gullón, B., Yáñez, R., Schols, H., Alonso, J.L.: Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: A comparative evaluation. J. Funct. Food. 20, 108–121 (2016)

    Article  Google Scholar 

  10. Patel, S., Goyal, A.: The current trends and future perspectives of prebiotics research:a review. 3 Biotech 2, 115–125 (2012)

    Article  Google Scholar 

  11. Marić, M., Ninčević Grassino, A., Zhu, Z., Barba, F.J., Brnčić, M., Rimac Brnčić, S.: An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci. Tech. 76, 28–37 (2018)

    Article  Google Scholar 

  12. Todd, R., Baroutian, S.: A techno-economic comparison of subcritical water, supercritical CO2 and organic solvent extraction of bioactives from grape marc. J. Clean. Prod. 158, 349–358 (2017)

    Article  Google Scholar 

  13. Ruiz, H.A., Rodríguez-Jasso, R.M., Fernandes, B.D., Vecente, A.A., Teixeira, J.A.: Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew. Sust. Energ. Rev. 21, 35–51 (2013)

    Article  Google Scholar 

  14. Chen, H.M., Fu, X., Abbasi, A.M., Luo, Z.G.: Preparation of environment-friendly pectin from sugar beet pulp and assessment of its emulsifying capacity. Int. J. Food Sci. Tech. 50, 1324–1330 (2015)

    Article  Google Scholar 

  15. Chen, H.M., Fu, X., Luo, Z.G.: Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water. Food Chem. 168, 302–310 (2015)

    Article  Google Scholar 

  16. Pińkowska, H., Wolak, P., Oliveros, E.: Production of xylose and glucose from rapeseed straw in subcritical water - Use of Doehlert design for optimizing the reaction conditions. Biomass Bioenerg. 58, 188–197 (2013)

    Article  Google Scholar 

  17. Guo, X., Meng, H., Zhu, S., Tang, Q., Pan, R., Yu, S.: Stepwise ethanolic precipitation of sugar beet pectin from the acidic extract. Carbohyd. Polym. 136, 316–321 (2016)

    Article  Google Scholar 

  18. Undersander, D., Mertens, D.R., Thiex, N.: Forage Analyses Procedures. The National Forage Testing Association, Omaha, Nebrasca (1993)

    Google Scholar 

  19. Hames, B., Scarlata, C., Sluiter, A.: Determination of Protein Content in Biomass. Report No. TP-510–42625. National Renewable Energy Laboratory, Golden, Colorado (2008)

    Google Scholar 

  20. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of Ash in Biomass. Report No. TP-510–42622. National Renewable Energy Laboratory, Golden, Colorado (2005)

    Google Scholar 

  21. Yapo, B.M., Robert, C., Wathelet, B., Paquot, M.: Effect of extraction conditions on the field, purity and surface properties of sugar beet pulp pectin extracts. Food Chem. 100, 1356–1364 (2007)

    Article  Google Scholar 

  22. Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.M., Ham-Pichavant, F., Cansell, F., Aymonier, A.: Thermogravometric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenerg. 35, 298–307 (2011)

    Article  Google Scholar 

  23. Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991)

    Article  Google Scholar 

  24. Micard, V., Renard, C.M.G.C., Thibault, J.F.: Enzymatic saccharification of sugar-beet pulp. Enzyme Microb. Tech. 19, 162–170 (1996)

    Article  Google Scholar 

  25. Voragen, A.G.J., Schols, H.A., Pilnik, W.: Determination of the degree of methylation and acetylation of pectin by HPLC. Food Hydrocolloids 1, 65–70 (1986)

    Article  Google Scholar 

  26. Guo, X., Meng, H., Zhu, S., Zhang, T., Yu, S.: Purifying sugar beet pectins from non-pectic components by means of metal precipitation. Food Hydrocolloids 51, 69–75 (2015)

    Article  Google Scholar 

  27. Levigne, S., Ralet, M.C., Thibault, J.F.: Characterisation of pectins extracted from fresh sugar beet under different conditions using an experimental design. Carbohyd. Polym. 49, 145–153 (2002)

    Article  Google Scholar 

  28. Martínez, M., Gullón, B., Schols, H.A., Alonso, J.L., Parajó, J.C.: Assessment of the production of oligomeric compounds from sugar beet pulp. Ind. Eng. Chem. Res. 48, 4681–4687 (2009)

    Article  Google Scholar 

  29. Martínez, M., Gullón, B., Yánez, R., Alonso, J.L., Parajó, J.C.: Kinetic assessment on the autohydrolysis of pectin-rich by-products. Chem. Eng. J. 162, 480–486 (2010)

    Article  Google Scholar 

  30. Prado, J.M., Lachos-Perez, D., Forster-Carneiro, T., Rostagno, M.A.: Sub- and supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: A review. Food Bioprod. Process. 98, 95–123 (2016)

    Article  Google Scholar 

  31. Yu, Y., Lou, X., Wu, H.: Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energ. Fuel. 22, 46–60 (2008)

    Article  Google Scholar 

  32. Arvela, P.M., Salmi, T., Holmbom, B., Willför, S., Murzin, D.Y.: Synthesis of sugars by hydrolysis of hemicelluloses - a review. Chem. Rev. 111, 5638–5666 (2011)

    Article  Google Scholar 

  33. Usuki, C., Kimura, Y., Adachi, S.: Degradation of pentoses and hexouronic acids in subcritical water. Chem. Eng. Technol. 31, 133–137 (2008)

    Article  Google Scholar 

  34. Mohamad, R., Aki, T., Nakashimada, Y., Okamura, Y., Tajima, T., Matsumura, Y.: Decomposition kinetics of uronic acids obtained from kelp under hydrothermal condition. J. Energy Inst. 90, 185–190 (2017)

    Article  Google Scholar 

  35. Aida, T.M., Sato, Y., Watanabe, M., Tajima, K., Nonaka, T., Hattori, H., Arai, K.: Dehydration of D-glucose in high temperature water at pressures up to 80 MPa. J. Supercrit. Fluids. 40, 381–388 (2007)

    Article  Google Scholar 

  36. Möller, M., Nilges, P., Harnisch, F., Schröder, U.: Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation. Chemsuschem 4, 566–579 (2011)

    Article  Google Scholar 

  37. Aida, T.M., Tajima, K., Watanabe, M., Saito, Y., Kuroda, K., Nonaka, T., Hattori, H., Smith, R.L., Arai, K.: Reactions of D-fructose in water at temperatures up to 400°C and pressures up to 100 MPa. J. Supercrit. Fluids. 42, 110–119 (2007)

    Article  Google Scholar 

  38. Liu, H.M., Li, M.F., Sun, R.C.: Hydrothermal liquefaction of cornstalk: 7-Lump distribution and characterization of products. Bioresource Technol. 128, 58–64 (2013)

    Article  Google Scholar 

  39. Li, D.Q., Du, G.M., Jing, W.W., Li, J.F., Yan, J.Y., Liu, Z.Y.: Combined effects of independent variables in yield and protein content of pectin extracted from sugar beet pulp by citric acid. Carbohyd. Polym. 129, 108–114 (2015)

    Article  Google Scholar 

  40. Olmos, J.C., Hansen, M.E.Z.: Enzymatic depolymerization of sugar beet pulp: Production and characterization of pectin and pectic-oligosaccharides as a potential source for functional carbohydrates. Chem. Eng. J. 192, 29–36 (2012)

    Article  Google Scholar 

  41. Thibault, J.F., Renard, C.M.G.C., Axelos, M.A.V., Roger, P., Crépeau, M.J.: Studies of the length of homogalacturonic regions in pectins by acid hydrolysis. Carbohyd. Res. 238, 271–286 (1993)

    Article  Google Scholar 

  42. Kaya, M., Sousa, A.G., Crépeau, M.J., Sørensen, S.O., Ralet, M.C.: Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction. Ann. Bot. 114, 1319–1326 (2014)

    Article  Google Scholar 

  43. Oosterveld, A., Beldman, G., Schols, H.A., Voragen, A.G.J.: Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. Carbohydrate Res. 328, 185–197 (2000)

    Article  Google Scholar 

  44. Fishman, M.L., Chau, H.K., Qi, P.X., Hotchkiss, A.T., Yadav, M.P.: Physico-chemical characterization of protein-associated polysaccharides extracted from sugar beet pulp. Carbohyd. Polym. 92, 2257–2266 (2013)

    Article  Google Scholar 

  45. Gnanasambandam, R., Proctor, A.: Determination of pectin of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chem. 68, 327–332 (2000)

    Article  Google Scholar 

  46. Peng, X., Mu, T., Zhang, M., Sun, H., Chen, J.: Effects of pH and high hydrostatic pressure on the structural and rheological properties of sugar beet pulp. Food Hydrocolloids 60, 161–169 (2016)

    Article  Google Scholar 

  47. Sun, R., Hughes, S.: Extraction and physico-chemical characterization of pectins from sugar beet pulp. Polymer J. 30, 671–677 (1998)

    Article  Google Scholar 

  48. Zouambia, Y., Moulai-Mostefa, N., Krea, M.: Structural characterization and surface of hydrophobically functionalized extracted pectins. Carbohyd. Polym. 78, 841–846 (2009)

    Article  Google Scholar 

  49. Li, P.J., Xia, J.L., Nie, Z.Y., Shan, Y.: Pectic oligosaccharides hydrolyzed from orange peel by fungal multienzyme complexes and their prebiotic and antibacterial potentials. LWT - Food Sci. Technol. 69, 203–210 (2016)

    Article  Google Scholar 

  50. Belorkar, S.A., Gupta, A.K.: Oligosaccharides: a boon from nature’s desk. AMB Express. 6, 82 (2016)

    Article  Google Scholar 

  51. Moreno, F.J., Corzo, N., Montilla, A., Villamiel, M., Olano, A.: Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides. Current Opin. Food Sci. 13, 50–55 (2017)

    Article  Google Scholar 

  52. Weil, J.R., Brewer, M., Hendrickson, R., Sarikaya, A., Ladisch, M.R.: Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl. Biochem. Biotechnol. 70–72, 99–111 (1998)

    Article  Google Scholar 

  53. Peterson, A.A., Lachance, R.P., Tester, J.W.: Kinetic evidence of the Maillard reaction in hydrothermal biomass processing: glucose-glycine interactions in high-temperature, high-pressure water. Ind. Eng. Chem. Res. 49, 2107–2117 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Pińkowska.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pińkowska, H., Wolak, P., Krzywonos, M. et al. Comprehensive Study of Hydrothermal Extraction of Pectin From Sugar Beet Pulp. Waste Biomass Valor 12, 4587–4598 (2021). https://doi.org/10.1007/s12649-020-01317-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01317-6

Keywords

Navigation