Skip to main content

Advertisement

Log in

Cationic starch: an effective flocculant for separating algal biomass from wastewater RO concentrate treated by microalgae

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae can remove nutrients and organic contaminants from municipal wastewater reverse osmosis concentrate (ROC) and enable resource recovery via biomass production. Two cationic starch flocculants (starch-graft-poly cationic moiety 2-methacryloyloxyethyl trimethyl ammonium chloride (St-g-PDMC) and starch-graft-poly cationic moiety 2,3-epoxypropyl trimethyl ammonium chloride (St-GTA)) were synthesized and tested as potential greener and lower cost alternatives to conventional chemical flocculants for harvesting Chlorella vulgaris and Nannochloropsis salina from the algae-treated ROC. St-GTA achieved up to 97% separation (based on optical density) for both algal species at the dosage of 5–10 mg g−1 dry cell weight (DWC) compared to alum (69% at 10 mg g−1 DWC) and PolyDADMAC (93% at 35 mg g−1 DWC). The overall better performance of St-GTA was attributed to its higher intrinsic viscosity, positive surface charge, and solubility. The harvesting efficiency was influenced by algal growth phases, which led to differences in the levels of negative charge and functional groups on the algal surfaces. The effectiveness of the flocculants was primarily associated with their respective level of positive surface charge (R2 = 0.87) that facilitated charge neutralization as indicated by apparent surface charge of the algal flocs (R2 = 0.97). Flocculation using St-GTA removed 40% TP, 25% TN, and 20% DOC from the residual contaminants of the algae-treated ROC. Overall, the study indicated that cationic starch could be an environmentally benign and cost-effective approach for harvesting microalgae from the treated ROC, and beneficial to the subsequent utilization of the harvested biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali Ahmad A, Sepideh N, Amir M, Heshmatollah N, Sima K (2016) Nitrate removal from water using alum and ferric chloride: a comparative study of alum and ferric chloride efficiency. Environ Health Eng Manag 3:69–73

    Article  Google Scholar 

  • APHA (2017) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, D.C

    Google Scholar 

  • Bayat Tork M, Khalilzadeh R, Kouchakzadeh H (2017) Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology. Bioresour Technol 243:583–588

    Article  CAS  PubMed  Google Scholar 

  • Bharte S, Desai K (2018) Techniques for harvesting, cell disruption and lipid extraction of microalgae for biofuel production. Biofuels 18:1–21

    Google Scholar 

  • Bolch C, Blackburn S (1996) Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. J Appl Phycol 8:5–13

    Article  Google Scholar 

  • Chakraborty T, Gabriel M, Amiri AS, Santoro D, Walton J, Smith S, Ray MB, Nakhla G (2017) Carbon and phosphorus removal from primary municipal wastewater using recovered aluminum. Environ Sci Technol 51:12302–12309

    Article  CAS  PubMed  Google Scholar 

  • Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  PubMed  Google Scholar 

  • Cheng YL, Hua W, Liu WH, Wang WQ, Ye X, Li L, Paul C, Roger R (2016) Synthesis and characterization of a starch-based cationic flocculant for microalgae harvesting. Int J Agric Biol Eng 9:139–145

    Google Scholar 

  • Chu F-LE, Dupuy JL, Webb KL (1982) Polysaccharide composition of five algal species used as food for larvae of the American oyster, Crassostrea virginica. Aquac Res 29:241–252

    Article  CAS  Google Scholar 

  • Coates J (2006) Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry. John Wiley & Sons Ltd, Chichester, pp 10815–10837

    Google Scholar 

  • Cogollo-Herrera K, Bonfante-Álvarez H, De Ávila-Montiel G Herrera-Barros A, González-Delgado AD (2018) Techno-economic sensitivity analysis of large scale chitosan production process from shrimp shell wastes. Chem Eng Trans 70:2179–2184

    Google Scholar 

  • De Queiroz Antonino RSCM, Lia Fook BRP, De Oliveira LVA, De Farias RRÍ, Lima EPN, Da Silva LRJ, Peniche Covas CA, Lia Fook MV (2017) Preparation and characterization of chitosan obtained from shells of shrimp. Mar Drugs 15:141

    Article  PubMed Central  Google Scholar 

  • De-Bashan LE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res 38:4222–4246

    Article  CAS  PubMed  Google Scholar 

  • Debora C, Edward J (2015) Prospects for biodiesel production from algae-based wastewater treatment in Brazil: a review. Renew Sust Energy Rev 52:1834–1846

    Article  Google Scholar 

  • Ek M, Gellerstedt G, Henriksson G (2009) Paper products physics and technology. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Elmaleh S, Coma J, Grasmick A, Bourgade L (1991) Magnesium induced algal flocculation in a fluidized bed. Water Sci Technol 23:1695–1702

    Article  CAS  Google Scholar 

  • Fasaei F, Bitter JH, Slegers PM, Van Boxtel AJB (2018) Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res 31:347–362

    Article  Google Scholar 

  • Hadjoudja S, Deluchat V, Baudu M (2010) Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J Colloid Interface Sci 342:293–299

    Article  CAS  PubMed  Google Scholar 

  • Hansel PA, Guy Riefler R, Stuart BJ (2014) Efficient flocculation of microalgae for biomass production using cationic starch. Algal Res 5:133–139

    Article  Google Scholar 

  • Harding SE (1997) The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Prog Biophys Mol Biol 68:207–262

    Article  CAS  PubMed  Google Scholar 

  • Henderson RK, Baker A, Parsons SA, Jefferson B (2008) Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Res 42:3435–3445

    Article  CAS  PubMed  Google Scholar 

  • Henderson RK, Parsons SA, Jefferson B (2010) The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. Water Res 44:3617–3624

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Chen Y (1996) Coagulation of colloidal particles in water by chitosan. J Chem Technol Biotechnol 66:227–232

    Article  CAS  Google Scholar 

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:36–36

    Article  Google Scholar 

  • Kinniburgh DG, Van Riemsdijk WH, Koopal LK, Benedetti MF (1998) Ion binding to humic substances: measurements, models, and mechanisms, adsorption of metals by geo-media. In: Jenne EA (ed) Adsorption of metals by geomedia. Academic Press, San Diego, pp 483–520

    Chapter  Google Scholar 

  • Krzemińska I, Pawlik-Skowrońska B, Trzcińska M, Tys J (2014) Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst Eng 37:735–741

    Article  PubMed  Google Scholar 

  • Kurotani A, Yamada Y, Sakurai T (2017) Alga-PrAS (algal protein annotation suite): a database of comprehensive annotation in algal proteomes. Plant Cell Physiol 58:e6–e6

    PubMed  PubMed Central  Google Scholar 

  • Letelier-Gordo CO, Holdt SL, De Francisci D, Karakashev DB, Angelidaki I (2014) Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch. Bioresour Technol 167:214–218

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Wei H, Li A, Yang H (2017) Evaluation of structural effects on the flocculation performance of a co-graft starch-based flocculant. Water Res 118:160–166

    Article  CAS  PubMed  Google Scholar 

  • Loganathan P, Gradzielski M, Bustamante H, Vigneswaran S (2020) Progress, challenges, and opportunities in enhancing NOM flocculation using chemically modified chitosan: a review towards future development. Environ Sci Water Res Technol 6:45–61

    Article  CAS  Google Scholar 

  • Matilainen A, Vepsäläinen M, Sillanpää M (2010) Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Colloid Interf Sci 159:189–197

    Article  CAS  Google Scholar 

  • Mehrabadi A, Craggs R, Farid MM (2016) Biodiesel production potential of wastewater treatment high rate algal pond biomass. Bioresour Technol 221:222–233

    Article  CAS  PubMed  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152

    Article  CAS  PubMed  Google Scholar 

  • Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Mal D, Singh RP (2005) Cationic starch: an effective flocculating agent. Carbohydr Polym 59:417–423

    Article  CAS  Google Scholar 

  • Pivokonský M, Pivokonská L, Bäumeltová J, Bubáková P (2009) The effect of cellular organic matter produced by cyanobacteria Microcystis aeruginosa on water purification. J Hydrol Hydromech 57:121–129

    Article  Google Scholar 

  • Prakash A, Solanki S, Prasad Rao PTSRK (2007) Treatment of textile effluent by cationic starches: reclamation of waste water. Pollut Res 26:19–25

    CAS  Google Scholar 

  • Pugazhendhi A, Shobana S, Bakonyi P, Nemestóthy N, Xia A, Banu JR, Kumar G (2019) A review on chemical mechanism of microalgae flocculation via polymers. Biotechnol Rep 21:e00302

    Article  Google Scholar 

  • Salim M A, Noordin A, Jahari A N (2010) A robust of fuzzy logic and proportional derivative control system for monitoring underwater vehicles. Second International Conference on Computer Research and Development pp 849-853

  • Saritha V, Srinivas N, Srikanth Vuppala NV (2017) Analysis and optimization of coagulation and flocculation process. Appl Water Sci 7:451–460

    Article  CAS  Google Scholar 

  • Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Sillanpää M, Ncibi MC, Matilainen A, Vepsäläinen M (2018) Removal of natural organic matter in drinking water treatment by coagulation: a comprehensive review. Chemosphere 190:54–71

    Article  PubMed  Google Scholar 

  • Soetrisnanto D, Hadiyanto H (2014) Phytoremediation of palm oil mill effluent using Pistia stratiotes plant and algae Spirulina sp for biomass production. Int J Eng Technol 27:1809–1814

    Google Scholar 

  • Uduman N, Qi Y, Danquah M, Forde G, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701

    Article  Google Scholar 

  • Vajihinejad V, Gumfekar SP, Bazoubandi B, Rostami Najafabadi Z, Soares JBP (2019) Water soluble polymer flocculants: synthesis, characterization, and performance assessment. Macromol Mater Eng 304:1800526

    Article  Google Scholar 

  • Vandamme D, Foubert I, Meesschaert B, Muylaert K (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22:525–530

    Article  Google Scholar 

  • Villacorte LO, Ekowati Y, Neu TR, Kleijn JM, Winters H, Amy G, Schippers JC, Kennedy MD (2015) Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Res 73:216–230

    Article  CAS  PubMed  Google Scholar 

  • Wen X, Du K, Wang Z, Peng X, Luo L, Tao H, Xu Y, Zhang D, Geng Y, Li Y (2016) Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. Biotechnol Biofuels 9:123–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiley PE, Campbell JE, Mckuin B (2011) Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res 83:326–338

    Article  CAS  PubMed  Google Scholar 

  • Wool P, Sun X (2005) Bio-based polymers and composites. Elsevier Academic Press, Waltham

    Google Scholar 

  • Wright SW, Jeffrey SW, Mantoura RFC (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Pub, Paris

    Google Scholar 

  • Wu H, Liu Z, Yang H, Li A (2016) Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water. Water Res 96:126–135

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Liu Z, Li A, Yang H (2017) Evaluation of starch-based flocculants for the flocculation of dissolved organic matter from textile dyeing secondary wastewater. Chemosphere 174:200–207

    Article  CAS  PubMed  Google Scholar 

  • Xia L, Li Y, Huang R, Song S (2017) Effective harvesting of microalgae by coagulation-flotation. R Soc Open Sci 4:170867–170867

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Li Y, Lv Z, Zhou H, Yang X, Chen J, Guo H (2017) Effective adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101. Sci Rep 7:3316–3316

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeap KL, Teng TT, Poh BT, Morad N, Lee KE (2014) Preparation and characterization of coagulation/flocculation behaviour of a novel inorganic–organic hybrid polymer for reactive and disperse dyes removal. Chem Eng J 243:305–314

    Article  CAS  Google Scholar 

  • Zhang X, Amendola P, Hewson JC, Sommerfeld M, Hu Q (2012) Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation. Bioresour Technol 116:477–484

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Fung KY, Ng KM (2017) Reverse osmosis concentrate conditioning for microalgae cultivation and a generalized workflow. Biomass Bioenergy 96:59–68

    Article  CAS  Google Scholar 

  • Zhang W, Cao Q, Xu G, Wang D (2018) Flocculation–dewatering behavior of microalgae at different growth stages under inorganic polymeric flocculant treatment: the relationships between algal organic matter and floc bewaterability. ACS Sustain Chem Eng 6(8):11087–96

Download references

Acknowledgments

The authors wish to thank Barwon Water (Victoria, Australia) for the assistance provided in collecting ROC samples for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linhua Fan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 724 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohseni, A., Fan, L., Roddick, F. et al. Cationic starch: an effective flocculant for separating algal biomass from wastewater RO concentrate treated by microalgae. J Appl Phycol 33, 917–928 (2021). https://doi.org/10.1007/s10811-020-02348-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02348-1

Keywords

Navigation