Skip to main content
Log in

Optimization of extraction conditions for ultrasound-assisted extraction of phenolic compounds from tamarillo fruit (Solanum betaceum) using response surface methodology

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The study intended to optimize the ultrasound-assisted extraction of phenolic compounds using response surface methodology as optimization tool. Initially, four solvents, namely, distilled water, ethanol, acetone and methanol at 100% concentration level were tested for extraction of total phenolics and acetone was found to be the best solvent. Individual experiments were performed to determine the best possible range for extraction time, solvent (acetone) concentration and ultrasound amplitude in the extraction process. Box-Behnken design with three independent variables of extraction time (5–15 min), ultrasound amplitude (20–60%) and solvent concentration (50–80%) were taken to maximize total phenolic content, total flavonoids content and DPPH radical scavenging activity that were taken as dependent variables. Quadratic model in response surface methodology was found to be significant. Extraction with acetone at 73 and 78% concentration and ultrasound amplitude of 43 and 46% were optimum for red and yellow tamarillo, respectively. Optimized extraction time was found to be 12 min for maximum phenolic content, flavonoids content and DPPH radical scavenging activity with the desirability of 0.94 and 0.97 for yellow and red tamarillo, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Bohs, Taxon 44, 583 (1995)

    Article  Google Scholar 

  2. H.I. Castro-Vargas, P. Benelli, S.R.S. Ferreira, F. Parada-Alfonso, J. Supercrit. Fluids 76, 17 (2013)

    Article  CAS  Google Scholar 

  3. C. Vasco, J. Avila, J. Ruales, U. Svanberg, A. Kamal-Eldin, Int. J. Food Sci. Nutr. 60, 278 (2009)

    Article  CAS  Google Scholar 

  4. J. Prohens, F. Neuz, Small Fruit Rev 1, 43 (2000)

    Article  Google Scholar 

  5. L. Bohs, A. Nelson, Novon 7, 341 (1997)

    Article  Google Scholar 

  6. M.C. Kou, J.H. Yen, J.T. Hong, C.L. Wang, C.W. Lin, M.J. Wu, LWT - Food Sci. Technol. 42, 458 (2009)

    Article  CAS  Google Scholar 

  7. S. Sellappan, C.C. Akoh, G. Krewer, J. Agric. Food Chem. 50, 2432 (2002)

    Article  CAS  Google Scholar 

  8. C. Mertz, A.L. Gancel, Z. Gunata, P. Alter, C. Dhuique-Mayer, F. Vaillant, A.M. Perez, J. Ruales, P. Brat, J. Food Compos. Anal. 22, 381 (2009)

    Article  CAS  Google Scholar 

  9. D. Pasrija, C. Anandharamakrishnan, Food Bioprocess Technol. 8, 95 (2015)

    Article  Google Scholar 

  10. A.I. Khuri, S. Mukhopadhyay, Comput. Statistics 2(2), 128 (2010)

    Article  Google Scholar 

  11. T. Belwal, P. Dhyani, I.D. Bhatt, R.S. Rawal, V. Pande, Food Chem. 207, 115 (2016)

    Article  CAS  Google Scholar 

  12. R. Tabaraki, A. Nateghi, Ultrason. Sonochem. 18, 1279 (2011)

    Article  CAS  Google Scholar 

  13. W. Setyaningsih, E. Duros, M. Palma, C.G. Barroso, Appl. Acoust. 103, 129 (2016)

    Article  Google Scholar 

  14. A.C. Soria, M. Villamiel, Trends Food Sci. Technol. 21, 323 (2010)

    Article  CAS  Google Scholar 

  15. F. Chemat, N. Rombaut, A.G. Sicaire, A. Meullemiestre, A.S. Fabiano-Tixier, M. Abert-Vian, Ultrason. Sonochem. 34, 540 (2017)

    Article  CAS  Google Scholar 

  16. S. Nipornram, W. Tochampa, P. Rattanatraiwong, R. Singanusong, Food Chem. 241, 338 (2018)

    Article  CAS  Google Scholar 

  17. M. Oroian, F. Ursachi, F. Dranca, Ultrason. Sonochem. 64, 105021 (2020)

    Article  CAS  Google Scholar 

  18. F.J. Barba, N. Grimi, E. Vorobiev, Food Eng. Rev. 7, 45 (2015)

    Article  CAS  Google Scholar 

  19. A. Pandey, T. Belwal, K.C. Sekar, I.D. Bhatt, R.S. Rawal, Ind. Crops Prod. 119, 218 (2018)

    Article  CAS  Google Scholar 

  20. E. Espada-Bellido, M. Ferreiro-González, C. Carrera, M. Palma, C.G. Barroso, G.F. Barbero, Food Chem. 219, 23 (2017)

    Article  CAS  Google Scholar 

  21. S. Hosseini, K. Parastouei, F. Khodaiyan, Int. J. Biol. Macromol. 158, 911 (2020)

    Article  CAS  Google Scholar 

  22. G.V.S. Bhagya Raj, K.K. Dash, Ultrason. Sonochem. 68, 105180 (2020)

    Article  CAS  Google Scholar 

  23. S. Espin, S. Gonzalez-manzano, V. Taco, C. Poveda, B. Ayuda-durán, A.M. Gonzalez-paramas, C. Santos-buelga 194, 1073 (2016)

    CAS  Google Scholar 

  24. R. Tabaraki, E. Heidarizadi, A. Benvidi, Sep. Purif. Technol. 98, 16 (2012)

    Article  CAS  Google Scholar 

  25. J. Dai, R.J. Mumper, Molecules 15, 7313 (2010)

    Article  CAS  Google Scholar 

  26. V. Sablania, S.J.D. Bosco, M. Bashir, J. Food Sci. Technol. 56, 5500 (2019)

    Article  CAS  Google Scholar 

  27. C.C. Chang, M.H. Yang, H.M. Wen, J.C. Chern, J. Food Drug Anal. 10, 3 (2002)

    Google Scholar 

  28. S. Saikia, N.K. Mahnot, C.L. Mahanta, Food Biosci. 13, 15 (2016)

    Article  CAS  Google Scholar 

  29. J. Handique, S.J. Bora, N. Sit, J. Food Sci. Technol. 56(8), 3732–3743 (2019)

    Article  CAS  Google Scholar 

  30. L. Galvan D’ Alessandro, K. Kriaa, I. Nikov, K. Dimitrov, Sep. Purif. Technol. 93, 42 (2012)

    Article  Google Scholar 

  31. M.C. Tan, C.P. Tan, C.W. Ho, Int. Food Res. J. 20, 3117 (2013)

    CAS  Google Scholar 

  32. G. Shui, L.P. Leong, Food Chem. 97, 277 (2006)

    Article  CAS  Google Scholar 

  33. A. Mokrani, K. Madani, Sep. Purif. Technol. 162, 68 (2016)

    Article  CAS  Google Scholar 

  34. C. Da Porto, E. Porretto, and D. Decorti. 20, 1076 (2013)

  35. C. Carrera, A. Ruiz-Rodríguez, M. Palma, C.G. Barroso, Anal. Chim. Acta. 732, 100 (2012)

    Article  CAS  Google Scholar 

  36. J.L. Luque-García, M.D. Luque De Castro, Trends Anal. Chem. 22, 41 (2003)

    Article  Google Scholar 

  37. J.L. Capelo-Martínez, Ultrasound in Chemistry (Wiley, New York, 2008).

    Book  Google Scholar 

  38. M.E. Orqueda, I.C. Zampini, S. Torres, M.R. Alberto, L.L. Pino Ramos, G. Schmeda-Hirschmann, M.I. Isla, J. Funct. Foods. 37, 531 (2017)

    Article  CAS  Google Scholar 

  39. P.G. Acosta-Quezada, M.D. Raigón, T. Riofrío-Cuenca, M.D. García-Martínez, M. Plazas, J.I. Burneo, J.G. Figueroa, S. Vilanova, J. Prohens, Food Chem. 169, 327 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors are grateful to Ministry of Food Processing Industries, India, (F.No. Q-11/25/2018-R&D) for providing grant for the research work. Authors also thank UGC-SAP for providing instrument facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charu Lata Mahanta.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Research involving human and animal participants

The study does not involve any human or animal testing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohilla, S., Mahanta, C.L. Optimization of extraction conditions for ultrasound-assisted extraction of phenolic compounds from tamarillo fruit (Solanum betaceum) using response surface methodology. Food Measure 15, 1763–1773 (2021). https://doi.org/10.1007/s11694-020-00751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00751-3

Keywords

Navigation