Skip to main content

Science and Technology Roadmap for Photocatalytic Membrane Separation: A Potential Route for Environmental Remediation and Fouling Mitigation

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

The chapter presents an overview regarding the nanoenhanced photocatalytic membrane separation process. Photocatalytic membrane can exhibit better properties, such as permeability, water flux, and enhanced photodegradation ability with antifouling tendencies. Different types of photocatalyst along with their composites can be used for membrane fabrication process. Advantages and disadvantages of different types of membrane reactor along with their configuration are illustrated in this chapter. Fabrication process of photocatalytic membrane is also discussed in the subsequent section. Antifouling mechanism of photocatalytic membrane is also discussed in the concluding section of the chapter. This chapter outlines the importance of integration of nanophotocatalysts with the membrane matrix to ensure higher photodegradation of pollutant, enhanced water flux with reduced fouling of the membrane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Ag3PO4:

Silver phosphate

Al2O3:

Alumina

APS:

Atmospheric plasma spraying

C3N4:

Carbon nitride

CeO2:

Cerium oxide

CuO:

Copper oxide

CVD:

Chemical vapor deposition

FO:

Forward osmosis

GO:

Graphene oxide

GS:

Gas separation

MD:

Membrane distillation

MF:

Microfiltration

NF:

Nanofiltration

PA:

Polyacrylonitrile

PEG:

Polyethylene glycol

PES:

Polyether sulfone

PMRs:

Photocatalytic membrane reactors

PS:

Polysulfone

PVC:

Polyvinylchloride

PVDF:

Polyvinylidene fluoride

rGO:

Reduced graphene oxide

RO:

Reverse osmosis

SnO2:

Tin oxide

TiO2:

Titanium oxide

UF:

Ultrafiltration

VOCs:

Volatile organic compounds

ZnO:

Zinc oxide

ZrO2:

Zirconium oxide

References

  1. Luo J, Chen W, Song H, Liu J (2020) Fabrication of hierarchical layer-by-layer membrane as the photocatalytic degradation of foulants and effective mitigation of membrane fouling for wastewater treatment. Sci Total Environ 699: https://doi.org/10.1016/j.scitotenv.2019.134398

    Article  CAS  PubMed  Google Scholar 

  2. Chen W, Mo J, Du X, Zhang Z, Zhang W (2019) Biomimetic dynamic membrane for aquatic dye removal. Water Res 151:243–251. https://doi.org/10.1016/j.watres.2018.11.078

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30. https://doi.org/10.1016/j.desal.2014.09.033

    Article  CAS  Google Scholar 

  4. Meng S, Greenlee LF, Shen YR, Wang E (2015) Basic science of water: challenges and current status towards a molecular picture. Nano Res 8(10):3085–3110. https://doi.org/10.1007/s12274-015-0822-y

    Article  CAS  Google Scholar 

  5. Meng S, Meng X, Fan W, Liang D, Wang L, Zhang W, Liu Y (2020) The role of transparent exopolymer particles (TEP) in membrane fouling: a critical review. Water Res 181: https://doi.org/10.1016/j.watres.2020.115930

    Article  CAS  PubMed  Google Scholar 

  6. Li R, Fan H, Shen L, Rao L, Tang J, Hu S, Lin H (2020) Inkjet printing assisted fabrication of polyphenol-based coating membranes for oil/water separation. Chemosphere 250: https://doi.org/10.1016/j.chemosphere.2020.126236

    Article  CAS  PubMed  Google Scholar 

  7. Rao L, Tang J, Hu S, Shen L, Xu Y, Li R, Lin H (2020) Inkjet printing assisted electroless Ni plating to fabricate nickel coated polypropylene membrane with improved performance. J Colloid Interface Sci 565:546–554. https://doi.org/10.1016/j.jcis.2020.01.069

    Article  CAS  PubMed  Google Scholar 

  8. Teng J, Wu M, Chen J, Lin H, He Y (2020) Different fouling propensities of loosely and tightly bound extracellular polymeric substances (EPSs) and the related fouling mechanisms in a membrane bioreactor. Chemosphere 255: https://doi.org/10.1016/j.chemosphere.2020.126953

    Article  CAS  PubMed  Google Scholar 

  9. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl Catal B 49(1):1–14. https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  10. Zollinger H (2003) Color chemistry: syntheses, properties, and applications of organic dyes and pigments. Wiley, Hoboken

    Google Scholar 

  11. Tang WZ, An Huren (1995) UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 31(9):4157–4170. https://doi.org/10.1016/0045-6535(95)80015-d

    Article  CAS  Google Scholar 

  12. Wang T, Wang Z, Wang P, Tang Y (2019) An integration of photo-Fenton and membrane process for water treatment by a PVDF@CuFe2O4 catalytic membrane. J Membr Sci 572:419–427. https://doi.org/10.1016/j.memsci.2018.11.031

    Article  CAS  Google Scholar 

  13. Khataee A, Sadeghi Rad T, Nikzat S, Hassani A, Aslan MH, Kobya M, Demirbaş E (2019) Fabrication of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanocomposite with enhanced sonophotocatalytic activity for the degradation of moxifloxacin. Chem Eng J 375: https://doi.org/10.1016/j.cej.2019.122102

    Article  CAS  Google Scholar 

  14. Kıranşan M, Khataee A, Karaca S, Sheydaei M (2015) Artificial neural network modeling of photocatalytic removal of a disperse dye using synthesized of ZnO nanoparticles on montmorillonite. Spectrochim Acta Part A Mol Biomol Spectrosc 140:465–473. https://doi.org/10.1016/j.saa.2014.12.100

    Article  CAS  Google Scholar 

  15. Rosman N, Salleh WNW, Mohamed MA, Jaafar J, Ismail AF, Harun Z (2018) Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue. J Colloid Interface Sci 532:236–260. https://doi.org/10.1016/j.jcis.2018.07.118

    Article  CAS  PubMed  Google Scholar 

  16. Haddad Irani-nezhad M, Hassanzadeh J, Khataee A, Orooji Y (2019) A chemiluminescent method for the detection of H2O2 and glucose based on intrinsic peroxidase-like activity of WS2 quantum dots. Molecules 24(4):689. https://doi.org/10.3390/molecules24040689

    Article  CAS  PubMed Central  Google Scholar 

  17. Jalili R, Khataee A (2019) Aluminum(III) triggered aggregation-induced emission of glutathione-capped copper nanoclusters as a fluorescent probe for creatinine. Microchim Acta 186(1). https://doi.org/10.1007/s00604-018-3111-0

  18. Darbandi M, Shaabani B, Schneider J, Bahnemann D, Gholami P, Khataee A, Yardani P, Hosseini MG (2019) TiO2 nanoparticles with superior hydrogen evolution and pollutant degradation performance. Int J Hydrogen Energy 44(44):24162–24173. https://doi.org/10.1016/j.ijhydene.2019.07.129

    Article  CAS  Google Scholar 

  19. Vatanpour V, Karami A, Sheydaei M (2017) Central composite design optimization of Rhodamine B degradation using TiO2 nanoparticles/UV/PVDF process in continuous submerged membrane photoreactor. Chem Eng Process 116:68–75. https://doi.org/10.1016/j.cep.2017.02.015

    Article  CAS  Google Scholar 

  20. Khataee A, Arefi-Oskoui S, Abdollahi B, Hanifehpour Y, Joo SW (2015) Synthesis and characterization of Pr x Zn1−x Se nanoparticles for photocatalysis of four textile dyes with different molecular structures. Res Chem Intermed 41(11):8425–8439. https://doi.org/10.1007/s11164-014-1901-5

    Article  CAS  Google Scholar 

  21. Rajamanickam D, Shanthi M (2016) Photocatalytic degradation of an organic pollutant by zinc oxide—solar process. Arab J Chem 9:S1858–S1868. https://doi.org/10.1016/j.arabjc.2012.05.006

    Article  CAS  Google Scholar 

  22. Peyravi M, Jahanshahi M, Mona Mirmousaei S, Lau W-J (2020) Dynamically coated photocatalytic zeolite–TiO2 membrane for oil-in-water emulsion separation. Arab J Sci Eng. https://doi.org/10.1007/s13369-019-04335-2

    Article  Google Scholar 

  23. Hir ZAM, Moradihamedani P, Abdullah AH, Mohamed MA (2017) Immobilization of TiO2 into polyethersulfone matrix as hybrid film photocatalyst for effective degradation of methyl orange dye. Mater Sci Semicond Process 57:157–165. https://doi.org/10.1016/j.mssp.2016.10.009

    Article  CAS  Google Scholar 

  24. Hadnadjev-Kostic M, Vulic T, Marinkovic-Neducin R, Lončarević D, Dostanić J, Markov Sš, Jovanović Dš (2017) Photo-induced properties of photocatalysts: a study on the modified structural, optical and textural properties of TiO2—ZnAl layered double hydroxide based materials. J Cleaner Prod 164:1–18. https://doi.org/10.1016/j.jclepro.2017.06.091

  25. Iglesias O, Rivero MJ, Urtiaga AM, Ortiz I (2016) Membrane-based photocatalytic systems for process intensification. Chem Eng J 305:136–148. https://doi.org/10.1016/j.cej.2016.01.047

    Article  CAS  Google Scholar 

  26. Molinari R, Lavorato C, Argurio P (2017) Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catal Today 281:144–164. https://doi.org/10.1016/j.cattod.2016.06.047

    Article  CAS  Google Scholar 

  27. Sun T, Liu Y, Shen L, Xu Y, Li R, Huang L, Lin H (2020) Magnetic field assisted arrangement of photocatalytic TiO2 particles on membrane surface to enhance membrane antifouling performance for water treatment. J Colloid Interface Sci 570:273–285. https://doi.org/10.1016/j.jcis.2020.03.008

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Shen L, Lin H, Yu W, Xu Y, Li R, Sun T, He Y (2020) A novel strategy based on magnetic field assisted preparation of magnetic and photocatalytic membranes with improved performance. J Membr Sci 612: https://doi.org/10.1016/j.memsci.2020.118378

    Article  CAS  Google Scholar 

  29. Xu Z-L, Alsalhy Qusay F (2004) Polyethersulfone (PES) hollow fiber ultrafiltration membranes prepared by PES/non-solvent/NMP solution. J Membr Sci 233(1–2):101–111. https://doi.org/10.1016/j.memsci.2004.01.005

    Article  CAS  Google Scholar 

  30. Liberal J, Costa G, Carmo A, Vitorino R, Marques C, Domingues MR, Domingues P, Gonçalves AC, Alves R, Sarmento-Ribeiro AB, Girão H, Cruz MT, Batista MT (2015) Chemical characterization and cytotoxic potential of an ellagitannin-enriched fraction from Fragaria vesca leaves. Arab J Chem 12(8):3652–3666. https://doi.org/10.1016/j.arabjc.2015.11.014

    Article  CAS  Google Scholar 

  31. Boubakri A, Hafiane A, Bouguecha SAT (2017) Direct contact membrane distillation: capability to desalt raw water. Arab J Chem 10:S3475–S3481. https://doi.org/10.1016/j.arabjc.2014.02.010

    Article  CAS  Google Scholar 

  32. Yang T, Liu F, Xiong H, Yang Q, Chen F, Zhan C (2019) Fouling process and anti-fouling mechanisms of dynamic membrane assisted by photocatalytic oxidation under sub-critical fluxes. Chin J Chem Eng 27(8):1798–1806. https://doi.org/10.1016/j.cjche.2018.10.019

    Article  CAS  Google Scholar 

  33. Ong CS, Goh PS, Lau WJ, Misdan N, Ismail AF (2016) Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: a review. Desalination 393:2–15. https://doi.org/10.1016/j.desal.2016.01.007

    Article  CAS  Google Scholar 

  34. Sidik DAB, Hairom NHH, Mohammad AW (2019) Performance and fouling assessment of different membrane types in a hybrid photocatalytic membrane reactor (PMR) for palm oil mill secondary effluent (POMSE) treatment. Process Saf Environ Prot 130:265–274. https://doi.org/10.1016/j.psep.2019.08.018

    Article  CAS  Google Scholar 

  35. Kumari P, Bahadur N, Dumée LF (2020) Photo-catalytic membrane reactors for the remediation of persistent organic pollutants—a review. Sep Purif Technol 230: https://doi.org/10.1016/j.seppur.2019.115878

    Article  CAS  Google Scholar 

  36. Vatanpour V, Madaeni SS, Rajabi L, Zinadini S, Derakhshan AA (2012) Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes. J Membr Sci 401–402:132–143. https://doi.org/10.1016/j.memsci.2012.01.040

    Article  CAS  Google Scholar 

  37. Vatanpour V, Madaeni SS, Khataee AR, Salehi E, Zinadini S, Monfared HA (2012) TiO2 embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 292:19–29. https://doi.org/10.1016/j.desal.2012.02.006

    Article  CAS  Google Scholar 

  38. Soroko I, Livingston A (2009) Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes. J Membr Sci 343(1–2):189–198. https://doi.org/10.1016/j.memsci.2009.07.026

  39. Molinari R, Mungari M, Drioli E, Di Paola A, Loddo V, Palmisano L, Schiavello M (2000) Study on a photocatalytic membrane reactor for water purify cation. Catal Today 55:71–78

    Article  CAS  Google Scholar 

  40. Zhang H, Quan X, Chen S, Zhao H (2006) The removal of sodium dodecylbenzene sulfonate surfactant from water using silica/titania nanorods/nanotubes composite membrane with photocatalytic capability. Appl Surf Sci 24:8598–8604

    Article  CAS  Google Scholar 

  41. Zhang H, Quan X, Chen S, Zhao H, Zhao Y (2006) Fabrication of photocatalytic membrane and evaluation of its efficiency in removal of organic pollutants from water. Sep Purif Technol 50:147–155

    Article  CAS  Google Scholar 

  42. Barni B, Cavicchioli A, Riva E, Zanoni L, Bignoli F, Bellobono IR, Gianturco F, De Giorgi A, Muntau H, Montanarella L, Facchetti S, Castellano L (1995) Laboratory-scale photodegradation of phenol in aqueous solution by photocatalytic membranes immobilizing titanium dioxides. Chemosphere 30:1847–1850

    Article  CAS  Google Scholar 

  43. Bellobono IR, Morazzoni F, Bianchi R, Mangone ES, Stanescu R, Costache C, Tozzi PM (2005) Solar energy driven photocatalytic membrane modules for water reuse in agricultural and food industries. Pre-industrial experience using s-triazines as model molecules. Int J Photoenergy 7:87–94

    Article  CAS  Google Scholar 

  44. Wang W-Y, Irawan A, Ku Y (2008) Photocatalytic degradation of Acid Red 4 using a titanium dioxide membrane supported on a porous ceramic tube. Water Res 42:4725–4732

    Article  CAS  PubMed  Google Scholar 

  45. Tsuru T, Toyosada T, Yoshioka T, Asaeda M (2001) Photocatalytic reactions in a filtration system through porous titanium dioxide membranes. J Chem Eng Jpn 34:844–847

    Article  CAS  Google Scholar 

  46. Bae T-H, Tak T-M (2005) Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J Membr Sci 249:1–8

    Article  CAS  Google Scholar 

  47. Bosc F, Ayral A, Guizard C (2005) Mesoporous anatase coatings for coupling membrane separation and photocatalyzed reactions. J Membr Sci 265:13–19

    Article  CAS  Google Scholar 

  48. Tsuru T, Kan-no T, Yoshioka T, Asaeda M (2006) A photocatalytic membrane reactor for VOC decomposition using Pt-modified titanium oxide porous membranes. J Membr Sci 280:156–162

    Article  CAS  Google Scholar 

  49. Mozia S (2010) Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep Purif Technol 73:71–91

    Article  CAS  Google Scholar 

  50. Molinari R, Pirillo F, Falco M, Loddo V, Palmisano L (2004) Photocatalytic degradation of dyes by using a membrane reactor. Chem Eng Process 43:1103–1114

    Article  CAS  Google Scholar 

  51. Molinari R, Palmisano L (2005) Photocatalytic membrane reactors in water purify cation’. In: Lehr J, Keeley J, Lehr J (eds) Water encyclopedia, domestic, municipal and industrial water supply and waste disposal, vol 1. Wiley, pp 791–797

    Google Scholar 

  52. Benotti MJ, Stanford BD, Wert EC, Snyder SA (2009) Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res 43:1513–1522

    Article  CAS  PubMed  Google Scholar 

  53. Fu J, Ji M, Wang Z, Jin L, An D (2006) A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst. J Hazard Mater 131:238–242

    Article  CAS  PubMed  Google Scholar 

  54. Chin SS, Lim TM, Chiang K, Fane AG (2007) Hybrid low-pressure submerged membrane photoreactor for the removal of bisphenol A. Desalination 202:253–261

    Article  CAS  Google Scholar 

  55. Chin SS, Lim TM, Chiang K, Fane AG (2007) Factors affecting the performance of a low-pressure submerged membrane photocatalytic reactor. Chem Eng J 130:53–63

    Article  CAS  Google Scholar 

  56. Augugliaro V, Garc í a-L ó pez E, Loddo V, Malato S, Maldonado I, Marc í G, Molinari R, Palmisano L (2005) Degradation of lincomycin in aqueous medium: coupling of solar photocatalysis and membrane separation. Solar Energy 79:402–408

    Google Scholar 

  57. Xu H, Ding M, Chen W et al (2018) Nitrogen–doped GO/TiO2 nanocomposite ultrafiltration membranes for improved photocatalytic performance. Sep Purif Technol 195:70–82

    Article  CAS  Google Scholar 

  58. Zhang X, Wang DK, Diniz Da Costa JC (2014) Recent progresses on fabrication of photocatalytic membranes for water treatment. Catal Today 230:47–54

    Article  CAS  Google Scholar 

  59. Leong S, Razmjou A, Wang K (2014) TiO2 based photocatalytic membranes: a review. J Membr Sci 472:167–184

    Article  CAS  Google Scholar 

  60. Ong CS, LauWJ Goh PS (2014) Investigation of submerged membrane photocatalytic reactor (sMPR) operating parameters during oily wastewater treatment process. Desalination 353:48–56

    Article  CAS  Google Scholar 

  61. Starr BJ, Tarabara VV, Herrera-Robledo M (2016) Coating porous membranes with a photocatalyst: comparison of LbL self-assembly and plasma-enhanced CVD techniques. J Membr Sci 514:340–349

    Article  CAS  Google Scholar 

  62. Yao X, Ma C, Huang H (2018) Solvothermal-assisted synthesis of biomass carbon quantum dots/bismuth oxyiodide microflower for enhanced photocatalytic activity. NANO 13:1850031

    Article  CAS  Google Scholar 

  63. Melvin Ng HK, Leo CP, Abdullah AZ (2017) Selective removal of dyes by molecular imprinted TiO2 nanoparticles in polysulfone ultrafiltration membrane. J Environ Chem Eng 5:3991–3998

    Article  CAS  Google Scholar 

  64. Bojarska M, Nowak B, Skowroński J (2017) Growth of ZnO nanowires on polypropylene membrane surface—characterization and reactivity. Appl Surf Sci 391:457–467

    Article  CAS  Google Scholar 

  65. Zhang H, Cao J, Kang P (2018) Ag nanocrystals decorated g-C3N4/Nafion hybrid membranes: one-step synthesis and photocatalytic performance. Mater Lett 213:218–221

    Article  CAS  Google Scholar 

  66. Horovitz I, Avisar D, Baker MA (2016) Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: influence of physical parameters. J Hazard Mater 310:98–107

    Article  CAS  PubMed  Google Scholar 

  67. Lin C-C, Wuu D-S, Huang J-J (2018) Antireflection and passivation property of aluminium oxide thin film on silicon nanowire by liquid phase deposition. Surf Coat Technol 350:1058–1064

    Article  CAS  Google Scholar 

  68. Park S, Park J, Heo J (2017) Growth behaviors and biocidal properties of titanium dioxide films depending on nucleation duration in liquid phase deposition. Appl Surf Sci 425:547–552

    Article  CAS  Google Scholar 

  69. Huang J-J, Lin C-C, Wuu D-S (2017) Antireflection and passivation property of titanium oxide thin film on silicon nanowire by liquid phase deposition. Surf Coatings Technol 320:252–258

    Article  CAS  Google Scholar 

  70. Owens GJ, Singh RK, Foroutan F (2016) Sol-gel based materials for biomedical applications. Prog Mater Sci 77:1–79

    Article  CAS  Google Scholar 

  71. Salavati-Niasari M, Soofivand F, Sobhani-Nasab A (2016) Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through sol-gel processes and its photocatalyst application. Adv Powder Technol 27:2066–2075

    Article  CAS  Google Scholar 

  72. Habibpanah AA, Pourhashem S, Sarpoolaky H (2011) Preparation and characterization of photocatalytic titania-alumina composite membranes by sol-gel methods. J Eur Ceram Soc 31:2867–2875

    Article  CAS  Google Scholar 

  73. Kandy MM, Gaikar VG (2018) Photocatalytic reduction of CO2 using CdS nanorods on porous anodic alumina support. Mater Res Bull 102:440–449

    Article  CAS  Google Scholar 

  74. Zong H, Xia X, Liang Y (2018) Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Mater Sci Eng C 92:1075–1091

    Article  CAS  Google Scholar 

  75. Patil JV, Mali SS, Kamble AS (2017) Electrospinning: a versatile technique for making of 1D growth of nanostructured nanofibers and its applications: an experimental approach. Appl Surf Sci 423:641–674

    Article  CAS  Google Scholar 

  76. Pahasup-anan T, Suwannahong K, Dechapanya W, Rangkupan R (2017) Fabrication and photocatalytic activity of TiO2 composite membranes via simultaneous electrospinning and electrospraying process. J Environ Sci 72:13–24

    Article  Google Scholar 

  77. Baig U, Matin A, Gondal MA, Zubair SM (2019) Facile fabrication of superhydrophobic, superoleophilic photocatalytic membrane for efficient oil-water separation and removal of hazardous organic pollutants. J Clean Prod 208:904–915

    Article  CAS  Google Scholar 

  78. Bet-moushoul E, Mansourpanah Y, Farhadi KH, Tabatabaei M (2016) TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes. Chem Eng J 283:29–46. https://doi.org/10.1016/j.cej.2015.06.124

    Article  CAS  Google Scholar 

  79. Leong S, Razmjou A, Wang K, Hapgood K, Zhang X, Wang H (2014) TiO2 based photocatalytic membranes: a review. J Membr Sci 472:167–184. https://doi.org/10.1016/j.memsci.2014.08.016

    Article  CAS  Google Scholar 

  80. Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review. Environ Poll 158:2335–2349. https://doi.org/10.1016/j.envpol.2010.03.024

    Article  CAS  Google Scholar 

  81. Barni B, Cavicchioli A, Riva E, Zanoni L, Bignoli F, Bellobono IR, Gianturco F, De Giorgi A, Muntau H, Montanarella L, Facchetti S, Castellano L (1995) Pilot-plant-scale photodegradation of phenol in aqueous solution by photocatalytic membranes immobilizing titanium dioxide (PHOTOPERM® process). Chemosphere 30:1861–1874. https://doi.org/10.1016/0045-6535(95)00067-I

    Article  CAS  Google Scholar 

  82. Bai H, Liu Z, Sun DD (2010) Hierarchically multifunctional TiO2 nano-thorn membrane for water purification. Chem Commun 46:6542–6544. https://doi.org/10.1039/C0CC01143F

    Article  CAS  Google Scholar 

  83. Kim SH, Kwak SY, Sohn BH, Park TH (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composition (TFC) membrane as an approach to solve biofouling problem. J Membr Sci 211:157–165. https://doi.org/10.1016/S0376-7388(02)00418-0

    Article  CAS  Google Scholar 

  84. Kwak SY, Kim SH (2001) Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ Sci Technol 35:2388–2394. https://doi.org/10.1021/es0017099

    Article  CAS  PubMed  Google Scholar 

  85. Bae TH, Tak TM (2005) Preparation of the TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system. J Membr Sci 266:1–5. https://doi.org/10.1016/j.memsci.2005.08.014

    Article  CAS  Google Scholar 

  86. Razmjou A, Holmes ARL, Li H, Mansouri J, Chen V (2012) The effect of modified TiO2 nanoparticles on polyethersulfone ultrafiltration hollow fiber membranes. Desalination 287:271–280. https://doi.org/10.1016/j.desal.2011.11.025

    Article  CAS  Google Scholar 

  87. Madaeni SS, Zinadini S, Vatanpour V (2011) A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J Membr Sci 380:155–162. https://doi.org/10.1016/j.memsci.2011.07.006

    Article  CAS  Google Scholar 

  88. Molinari R, Palmisano L, Drioli E, Schiavello M (2002) Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. J Membr Sci 206:399–415. https://doi.org/10.1016/S0376-7388(01)00785-2

    Article  CAS  Google Scholar 

  89. Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275. https://doi.org/10.1016/j.memsci.2014.11.019

    Article  CAS  Google Scholar 

  90. Chin SS, Chiang K, Fane AG (2006) The stability of polymeric membranes in a TiO2 photocatalysis process. J Membr Sci 275:202–211. https://doi.org/10.1016/j.memsci.2005.09.033

    Article  CAS  Google Scholar 

  91. Morehouse JA, Taylor DL, Lloyd DR, Lawler DF, Freeman BD, Worrel LS (2006) The effect of uni-axial stretching on the roughness of microfiltration membranes. J Membr Sci 280:712–719. https://doi.org/10.1016/j.memsci.2006.02.027

    Article  CAS  Google Scholar 

  92. Morris RE, Krikanova E, Shadman F (2004) Photocatalytic membrane for removal of organic contaminants during ultra-purification of water. Clean Technol Environ Policy 6:96–104. https://doi.org/10.1007/s10098-003-0198-7

    Article  CAS  Google Scholar 

  93. Kotte MR, Choi M, Diallo MS (2014) A facile route to the preparation of mixed matrix polyvinylidene fluoride membranes with in-situ generated polyethyleneimine particles. J Membr Sci 450:93–102. https://doi.org/10.1016/j.memsci.2013.08.025

    Article  CAS  Google Scholar 

  94. Luisa Di Vona M, Ahmed Z, Bellitto S, Lenci A, Traversa E, Licoccia S (2007) SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol–gel process. J Membr Sci 296:156–161. https://doi.org/10.1016/j.memsci.2007.03.037

    Article  CAS  Google Scholar 

  95. Lantelme B, Dumon M, Mai C, Pascault JP (1996) In situ polymerization of titanium alkoxides in polyvinylacetate. J Non-Cryst Solids 194:63–71. https://doi.org/10.1016/0022-3093(95)00498

    Article  CAS  Google Scholar 

  96. Xing W, Fan Y, Jin W (2013) Application of ceramic membranes in the treatment of water. In: Duke M, Zhao D, Semiat R (eds) Functional nanostructured materials and membranes for water treatment

    Google Scholar 

  97. Basile A (ed) (2013) Handbook of membrane reactors: volume 2 reactor types and industrial applications. Woodhead Publishing, Cambridge

    Google Scholar 

  98. Athanasekou CP, Romanos GE, Katsaros FK, Kordatosb K, Likodimos V, Falaras P (2012) Very efficient composite Titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes. J Membr Sci 392–393:192–203. https://doi.org/10.1016/j.memsci.2011.12.028

    Article  CAS  Google Scholar 

  99. Lin Y-F, Tung K-L, Tzeng Y-S, Chen J-H, Chang K-S (2012) Rapid atmospheric plasma spray coating preparation and photocatalytic activity of macroporous Titania nanocrystalline membranes. J Membr Sci 389:83–90. https://doi.org/10.1016/j.memsci.2011.10.018

    Article  CAS  Google Scholar 

  100. Kumari P, Bahadur N, Dumée LF (2020) Photo-catalytic membrane reactors for the remediation of persistent organic pollutants—a review. Sep Purif Technol 230:

    Article  CAS  Google Scholar 

  101. Ly QV, Kim H-C, Hur J (2018) Tracking fluorescent dissolved organic matter in hybrid ultrafiltration systems with TiO2/UV oxidation via EEM-PARAFAC. J Membr Sci 549:275

    Article  CAS  Google Scholar 

  102. Desa AL, Hairom NHH, Ng LY, Ng CY, Ahmad MK, Mohammad AW (2019) Industrial textile wastewater treatment via membrane photocatalytic reactor (MPR) in the presence of ZnO-PEG nanoparticles and tight ultrafiltration. J Water Process Eng 31:

    Article  Google Scholar 

  103. Koulivand H, Shahbazi A, Vatanpour V, Rahmandoust M (2020) Separation and purification technology, vol 230, p 115895

    Google Scholar 

  104. Ng LY, Ahmad A, Mohammad AW (2017) Alteration of polyethersulphone membranes through UV-induced modification using various materials: a brief review. Arab J Chem 10:S1821

    Article  CAS  Google Scholar 

  105. Ghalamchi L, Aber S, Vatanpour V, Kian M (2019) Comparison of NLDH and g-C3N4 nanoplates and formative Ag3PO4 nanoparticles in PES microfiltration membrane fouling: applications in MBR. Chem Eng Res Des 147:443

    Article  CAS  Google Scholar 

  106. Ahmad R, Kim JK, Kim JH, Kim J (2017) Nanostructured ceramic photocatalytic membrane modified with a polymer template for textile wastewater treatment. Appl Sci 7:1284

    Article  CAS  Google Scholar 

  107. Yu S, Wang Y, Sun F, Wang R, Zhou Y (2018) Novel mpg-C3N4/TiO2 nanocomposite photocatalytic membrane reactor for sulfamethoxazole photodegradation. Chem Eng J 337:183

    Article  CAS  Google Scholar 

  108. Zakeritabar SF, Jahanshahi M, Peyravi M (2018) Photocatalytic behavior of induced membrane by ZrO2-SnO2 nanocomposite for pharmaceutical wastewater treatment. Catal Lett 148:882–893

    Article  CAS  Google Scholar 

  109. Nasrollahi N, Vatanpour V, Aber S, Mahmoodi NM (2018) Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Sep Purif Technol 192:369

    Article  CAS  Google Scholar 

  110. Singh R, Yadav V, Purkait MK (2019) Cu2O photocatalyst modified antifouling polysulfone mixed matrix membrane for ultrafiltration of protein and visible light driven photocatalytic pharmaceutical removal. Sep Purif Technol 212:191

    Article  CAS  Google Scholar 

  111. Zangeneh H, Zinatizadeh AA, Zinadini S, Feyzi M, Bahnemann DW (2019) Preparation and characterization of a novel photocatalytic self-cleaning PES nanofiltration membrane by embedding a visible-driven photocatalyst boron doped-TiO2SiO2/CoFe2O4 nanoparticles. Sep Purif Technol 209:764–775

    Article  CAS  Google Scholar 

  112. Ghalamchi L, Aber, S, Vatanpour V, Kian M (2019) Comparison of NLDH and g-C3N4 nanoplates and formative Ag3PO4 nanoparticles in PES microfiltration membrane fouling: applications in MBR. Chem Eng Res Des 147:443–457

    Google Scholar 

  113. Mishra G, Mukhopadhyay M (2019) TiO2 decorated functionalized halloysite nanotubes (TiO2@HNTs) and photocatalytic PVC membranes synthesis, characterization and its application in water treatment. Sci Rep 9, 4345. https://doi.org/10.1038/s41598-019-40775-4

  114. Nasrollahi N, Leila G, Vahid V, Alireza K (2020) Photocatalytic-membrane technology: a critical review for membrane fouling mitigation. J Ind Eng Chem 93:101–116

    Google Scholar 

  115. Yaqoob AA, Parveen T, Umar K, Nasir M, Ibrahim M Role of nanomaterials in the treatment of wastewater: a review. Water 12:1–30. https://doi.org/10.3390/w12020495

  116. Sile-Yuksel M, Tas B, Koseoglu-Imer DY, Koyuncu I (2014) Effect of silver nanoparticle (AgNP) location in nanocomposite membrane matrix fabricated with different polymer type on antibacterial mechanism. Desalination 347:120

    Article  CAS  Google Scholar 

  117. Wei Z, He Y, Huang Z, Xiao X, Li B, Ming S, Cheng X (2019) Photocatalytic membrane combined with biodegradation for toluene oxidation. Ecotoxicol Environ Saf 184:

    Article  CAS  PubMed  Google Scholar 

  118. Tufail A, Alharbi S, Alrifai J, Ansari A, Price WE, Hai FI (2021) Combining enzymatic membrane bioreactor and ultraviolet photolysis for enhanced removal of trace organic contaminants: degradation efficiency and by-products formation. Process Safety Environ Protect 145:110–119. https://doi.org/10.1016/j.psep.2020.08.001

  119. Rolewicz-Kalińska A, Lelicińska-Serafin K, Manczarski P (2021) Volatile organic compounds, ammonia and hydrogen sulphide removal using a two-stage membrane biofiltration process. Chem Eng Res Design 165:69–80. https://doi.org/10.1016/j.cherd.2020.10.017

  120. Ghalamchi L, Aber S, Vatanpour V, Kian M (2019) A novel antibacterial mixed matrixed PES membrane fabricated from embedding aminated Ag3PO4/g-C3N4 nanocomposite for use in the membrane bioreactor. J Ind Eng Chem 70:412

    Article  CAS  Google Scholar 

  121. Dong L-x, Yang H-w, Liu S-t, Wang X-m, Xie YF (2015) Fabrication and anti-biofouling properties of alumina and zeolite nanoparticle embedded ultrafiltration membranes. Desalination 365:70

    Google Scholar 

  122. Chae H-R, Lee J, Lee C-H, Kim I-C, Park P-K (2015) Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J Membr Sci 483:128

    Article  CAS  Google Scholar 

  123. Damodar RA, You S-J, Chou H-H (2009) Study the self-cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J Hazard Mater 172:1321

    Article  CAS  PubMed  Google Scholar 

  124. Zhang M, Liu Z, Gao Y, Shu L (2017) Ag modified g-C3N4 composite entrapped PES UF membrane with visible-light-driven photocatalytic antifouling performance. RSC Adv 7:42919

    Article  CAS  Google Scholar 

  125. Gunawan P, Guan C, Song X, Zhang Q, Leong SSJ, Tang C, Chen Y, Chan-Park MB, Chang MW, Wang K (2011) Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control. ACS Nano 5:10033

    Article  CAS  PubMed  Google Scholar 

  126. Schlosser D (2020) Biotechnologies for water treatment. In: Advanced nano-bio technologies for water and soil treatment, pp 335–343

    Google Scholar 

  127. Lu F, Astruc D (2020) Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord Chem Rev 408:

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chowdhury, Z.Z. et al. (2022). Science and Technology Roadmap for Photocatalytic Membrane Separation: A Potential Route for Environmental Remediation and Fouling Mitigation. In: Garg, S., Chandra, A. (eds) Green Photocatalytic Semiconductors. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-77371-7_17

Download citation

Publish with us

Policies and ethics