Skip to main content

Advertisement

Log in

Ohmic Heating–Assisted Extraction of Natural Color Matters from Red Beetroot

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The main objectives of this investigation were to investigate the combined impact of the ohmic heating–assisted extraction (OHAE) parameters (voltage gradient and frequency) and the green extraction mediums (aqueous, aqueous ethanol, acidified aqueous ethanol) on betalain yield, extraction yield, color quality, energy, and exergy efficiency, and to compare them with the effects of conventional extraction (CE) process. During the OHAE process, the betacyanins yield increased as voltage gradient increased, and the betalain was extracted better in aqueous ethanol than other extraction mediums. The color changes (ΔE, ΔC, hue angle, chroma) of the extract due to diffusion of color matters during OHAE process were higher than the CE process (p < 0.05). As the voltage gradient in OHAE increased, the energy and exergy efficiencies decreased (p < 0.05). The energy efficiencies of applications for 11 V/cm, 17 V/cm, and 23 V/cm were determined in the range of 52–64%, 38–61%, and 37–55%, respectively. On the other hand, the exergy efficiencies of aqueous, aqueous ethanol, and acidified aqueous ethanol extraction mediums were determined in the range of 29–51%, 34–64%, and 44–62%, respectively. The optimum OHAE condition was predicted by applying the desirability function method in the optimization procedure as the voltage gradient of 17 V/cm, the frequency of 400 Hz, and aqueous ethanol extraction medium. This optimum condition of OHAE for the purpose of extraction of betalains from red beet root was recommended to industrial and academic applications by taking criteria of higher exergy/energy efficiencies, lower quality changes, and shorter process times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Abenoza, M., Benito, M., Saldaña, G., Álvarez, I., Raso, J., & Sánchez-Gimeno, A. C. (2013). Effects of pulsed electric field on yield extraction and quality of olive oil. Food and Bioprocess Technology, 6(6), 1367–1373.

    Article  Google Scholar 

  • Al-Hilphy, A. R., Al-Musafer, A. M., & Gavahian, M. (2020). Pilot-scale ohmic heating-assisted extraction of wheat bran bioactive compounds: Effects of the extract on corn oil stability. Food Research International, 137, 109649.

    Article  CAS  PubMed  Google Scholar 

  • Al-Hilphy, A. R., AlRikabi, A. K., & Al-Salim, A. M. (2015). Extraction of phenolic compounds from wheat bran using ohmic heating. Food Science and Quality Management, 43, 21–28.

    Google Scholar 

  • Al-Hilphy, A. R. S. (2014). A practical study for new design of essential oils extraction apparatus using ohmic heating. International Journal of Agricultural Science, 4(12), 351–366.

    Google Scholar 

  • Anonymous (2018). Raw beetroot composition, US Department of Agriculture. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169145/nutrients. Accessed 01/04/2021

  • Attia, G. Y., Moussa, M. M., & Sheashea, E. E. D. R. (2013). Characterization of red pigments extracted from red beet (Beta vulgaris, L.) and its potential uses as antioxidant and natural food colorants. Egyptian Journal of Agricultural Research, 91(3), 1095–1110.

  • Barba, F. J., Brianceau, S., Turk, M., Boussetta, N., & Vorobiev, E. (2015). Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food and Bioprocess Technology, 8(5), 1139–1148.

    Article  CAS  Google Scholar 

  • Baysal, T., İçier, F., & Baysal, A. H. (2011). Güncel Elektriksel Isıtma Yöntemleri (1st ed.). Sidas Yayıncılık. in Turkish.

    Google Scholar 

  • Cengel, Y. A., & Boles, M. A. (2006). Thermodynamics: An engineering approach (5th ed.). McGraw-Hill.

    Google Scholar 

  • Cevik, M., & Icier, F. (2018). Effects of voltage gradient and fat content on changes of electrical conductivity of frozen minced beef meat during ohmic thawing. Journal of Food Process Engineering, 41(4), e12675.

    Article  Google Scholar 

  • Choi, Y., & Okos, M. R. (1986). Effects of temperature and composition on the thermal properties of foods. Food Engineering and Process Applications, Transport Phenomena, 1, 93–101.

    Google Scholar 

  • Çilingir, S., Goksu, A., & Sabanci, S. (2021). Production of pectin from lemon peel powder using ohmic heating-assisted extraction process. Food and Bioprocess Technology, 14, 1349–1360.

    Article  Google Scholar 

  • Coelho, M. I., Pereira, R. N. C., Teixeira, J. A., Pintado, M. E.(2017). Valorization of tomato by-products: Influence of ohmic heating process on polyphenols extraction. In: 11th World Congress on Polyphenols Applications, June 20–21, 2017, Vienna, 87p. Retrieved from https://hdl.handle.net/1822/47502

  • Cokgezme, O. F., Sabanci, S., Cevik, M., Yildiz, H., & Icier, F. (2017). Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system. Journal of Food Engineering, 207, 1–9.

    Article  CAS  Google Scholar 

  • De Campos, L. M., Leimann, F. V., Pedrosa, R. C., & Ferreira, S. R. (2008). Free radical scavenging of grape pomace extracts from Cabernet sauvignon (Vitis vinifera). Bioresource Technology, 99(17), 8413–8420.

    Article  PubMed  Google Scholar 

  • De Halleux, D., Piette, G., Buteau, M. L., & Dostie, M. (2005). Ohmic cooking of processed meats: Energy evaluation and food safety considerations. Canadian Biosystems Engineering, 47(3), 341–347.

    Google Scholar 

  • Delgado-Vargas, F., Jimenrz, A. R., & Paredes-Lopez, O. (2000). Natural pigments carotenoids, anthocyanine and betalains-characteristics, biosynthesis, processing and stability. Critical Reviews in Food Science and Nutrition, 40(3), 173–289.

    Article  CAS  PubMed  Google Scholar 

  • El Darra, N., Grimi, N., Vorobiev, E., Louka, N., & Maroun, R. (2013). Extraction of polyphenols from red grape pomace assisted by pulsed ohmic heating. Food and Bioprocess Technology, 6(5), 1281–1289p.

    Article  CAS  Google Scholar 

  • El Darra, N., Grimi, N., Vorobiev, E., Louka, N., & Maroun, R. (2013). Extraction of polyphenols from red grape pomace assisted by pulsed ohmic heating. Food and Bioprocess Technology, 6(5), 1281–1289p.

    Article  CAS  Google Scholar 

  • Erbay, Z., & Icier, F. (2009). Optimization of hot air drying of olive leaves using response surface methodology. Journal of Food Engineering, 91(4), 533–541.

    Article  CAS  Google Scholar 

  • Eren, İ, & Kaymak-Ertekin, F. (2007). Optimization of osmotic dehydration of potato using response surface methodology. Journal of Food Engineering, 79(1), 344–352.

    Article  Google Scholar 

  • Fathordoobady, F., Mirhosseini, H., Selamat, J., & Manap, M. Y. A. (2016). Effect of extraction medium and ratio on betacyaninss and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction. Food Chemistry, 202, 70–80.

    Article  CAS  PubMed  Google Scholar 

  • Fincan, M., DeVito, F., & Dejmek, P. (2004). Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. Journal of Food Engineering, 64(3), 381–388.

    Article  Google Scholar 

  • Frontuto, D., Carullo, D., Harrison, S. M., Brunton, N. P., Ferrari, G., Lyng, J. G., & Pataro, G. (2019). Optimization of pulsed electric fields-assisted extraction of polyphenols from potato peels using response surface methodology. Food and Bioprocess Technology, 12(10), 1708–1720.

    Article  CAS  Google Scholar 

  • Gagneten, M., Leiva, G., Salvatori, D., Schebor, C., & Olaiz, N. (2019). Optimization of pulsed electric field treatment for the extraction of bioactive compounds from blackcurrant. Food and Bioprocess Technology, 12(7), 1102–1109.

    Article  CAS  Google Scholar 

  • Gavahian, M., & Chu, Y. H. (2018). Ohmic accelerated steam distillation of essential oil from lavender in comparison with conventional steam distillation. Innovative Food Science and Emerging Technologies, 50, 34–41.

    Article  CAS  Google Scholar 

  • Gavahian, M., Chu, Y. H., & Sastry, S. (2018a). Extraction from food and natural products by moderate electric field: Mechanisms, benefits, and potential industrial applications. Comprehensive Reviews in Food Science and Food Safety, 17(4), 1040–1052.

    Article  PubMed  Google Scholar 

  • Gavahian, M., Farahnaky, A., Javidnia, K., & Majzoobi, M. (2012). Comparison of ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L. Innovative Food Science & Emerging Technologies, 14, 85–91.

    Article  CAS  Google Scholar 

  • Gavahian, M., Farhoosh, R., Javidnia, K., Shahidi, F., & Farahnaky, A. (2015). Effect of applied voltage and frequency on extraction parameters and extracted essential oils from Mentha piperita by ohmic assisted hydrodistillation. Innovative Food Science and Emerging Technologies, 29, 161–169.

    Article  CAS  Google Scholar 

  • Gavahian, M., Lee, Y. T., & Chu, Y. H. (2018b). Ohmic-assisted hydrodistillation of citronella oil from Taiwanese citronella grass: Impacts on the essential oil and extraction medium. Innovative Food Science and Emerging Technologies, 48, 33–41.

    Article  CAS  Google Scholar 

  • Halden, K., de Alwis, A. A. P., & Fryer, P. J. (1990). Changes in the electrical conductivity of foods during ohmic heating. International Journal of Food Science and Technology, 25, 9–25.

    Article  Google Scholar 

  • Helrich, K. (1990). Official methods of analysis of the Association of Official Analytical Chemistry (15th ed.). The Association.

    Google Scholar 

  • Icier, F., Cokgezme, Ö. F., Döner, D., Bayana, D., Kaya, O., & Çabas, B. M. (2021). Mathematical modelling of vacuum ohmic evaporation process. Innovative Food Science & Emerging Technologies, 67, 102560.

    Article  Google Scholar 

  • Icier, F., Cokgezme, Ö. F., & Sabancı, S. (2017). Alternative thawing methods for the blanched/non-blanched potato cubes: Microwave, ohmic and carbon fiber plate assisted cabin thawing. Journal of Food Process Engineering, 40, e12403.

    Article  Google Scholar 

  • Icier, F., Colak, N., Erbay, Z., Kuzgunkaya, E. H., & Hepbasli, A. (2010). A comparative study on exergetic performance assessment for drying of broccoli florets in three different drying systems. Drying Technology, 28(2), 193–204.

    Article  Google Scholar 

  • Icier, F., Sastry, S. K., & Ilicali, C. (2006). Effect of operating conditions and perturbations on the ohmic heating rate of salt solutions. Journal of Food Science and Technology-Mysore, 43(2), 140–144.

    Google Scholar 

  • Icier, F., Sengun, I. Y., Turp, G. Y., & Arserim, E. H. (2014). Effects of process variables on some quality properties of meatballs semi-cooked in a continuous type ohmic cooking system. Meat Science, 96(3), 1345–1354.

    Article  PubMed  Google Scholar 

  • Indiarto, R., & Rezaharsamto, B. (2020). A review on ohmic heating and its use in food. International Journal Science Technology Research, 9(2), 485–490.

    Google Scholar 

  • Jiratanan, T., & Liu, R. H. (2004). Antioxidant activity of processed table beets (Beta vulgaris var., conditiva) and green beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 52(9), 2659–2670.

    Article  CAS  PubMed  Google Scholar 

  • Kandušer, M., & Miklavčič, D. (2009). Electroporation in biological cell and tissue: An overview. Electrotechnologies for Extraction from Food Plants and Biomaterials (pp. 1–37). Springer.

    Google Scholar 

  • Kramer, A., & Twigg, B. A. (1960). Principles and instrumentation for the physical measurement of food quality with special reference to fruit and vegetable products. Advances in Food Research (Vol. 9, pp. 153–220). Academic Press.

    Google Scholar 

  • Kujala, T. S., Vienola, M. S., Klika, K. D., Loponen, J. M., & Pihlaja, K. (2002). Betalain and phenolic compositions of four beetroot (Beta vulgaris) cultivars. European Food Research and Technology, 214(6), 505–510.

    Article  CAS  Google Scholar 

  • Kulshrestha, S., & Sastry, S. (2003). Frequency and voltage effects on enhanced diffusion during moderate electric field (MEF) treatment. Innovative Food Science and Emerging Technologies, 4(2), 189–194.

    Article  Google Scholar 

  • Kulshrestha, S., & Sastry, S. (2003). Frequency and voltage effects on enhanced diffusion during moderate electric field (MEF) treatment. Innovative Food Science and Emerging Technologies, 4(2), 189–194.

    Article  Google Scholar 

  • Lima, M., Heskitt, B. F., & Sastry, S. K. (2001). Diffusion of beet dye during electrical and conventional heating at steady-state temperature 1. Journal of Food Process Engineering, 24(5), 331–340.

    Article  Google Scholar 

  • Lima, M., & Sastry, S. K. (1999). The effects of ohmic heating frequency on hot-air drying rate and juice yield. Journal of food engineering, 41(2), 115–119.

    Article  Google Scholar 

  • Loginova, K. V., Lebovka, N. I., & Vorobiev, E. (2011). Pulsed electric field assisted aqueous extraction of colorants from red beet. Journal of Food Engineering, 106(2), 127–133.

    Article  CAS  Google Scholar 

  • López, N., Puértolas, E., Condón, S., Raso, J., & Alvarez, I. (2009). Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. Journal of Food Engineering, 90(1), 60–66.

    Article  Google Scholar 

  • Loypimai, P., Moongngarm, A., Chottanom, P., & Moontree, T. (2015). Ohmic heating-assisted extraction of anthocyanins from black rice bran to prepare a natural food colourant. Innovative Food Science and Emerging Technologies, 27, 102–110p.

    Article  CAS  Google Scholar 

  • Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: Process and product optimization using designed experiments (2nd ed.). Wiley.

    Google Scholar 

  • Palaniappan, S., & Sastry, S. K. (1991). Electrical conductivities of selected solid foods during ohmic heating 1. Journal of Food Process Engineering, 14(3), 221–236.

    Article  Google Scholar 

  • Parniakov, O., Lebovka, N. I., Van Hecke, E., & Vorobiev, E. (2014). Pulsed electric field assisted pressure extraction and solvent extraction from mushroom (Agaricus bisporus). Food and Bioprocess Technology, 7(1), 174–183.

    Article  CAS  Google Scholar 

  • Pataro, G., Bobinaitė, R., Bobinas, Č., Šatkauskas, S., Raudonis, R., Visockis, M., ... Viškelis, P. (2017). Improving the extraction of juice and anthocyanins from blueberry fruits and their by-products by application of pulsed electric fields.&nbsp;Food and Bioprocess Technology,&nbsp;10(9), 1595–1605.

  • Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36–60.

    Article  CAS  Google Scholar 

  • Pereira, R. N., Rodrigues, R. M., Genisheva, Z., Oliveira, H., de Freitas, V., Teixeira, J. A., & Vicente, A. A. (2016). Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. LWT-Food Science and Technology, 74, 493–503.

    Article  CAS  Google Scholar 

  • Porras-Parral, G., Miri, T., Bakalis, S., & Fryer, P. J. (2012). The effect of electrical processing on mass transfer in beetroot and model gels. Journal of Food Engineering, 112(3), 208–217.

    Article  Google Scholar 

  • Praporscic, I., Lebovka, N. I., Ghnimi, S., & Vorobiev, E. (2006). Ohmically heated, enhanced expression of juice from apple and potato tissues. Biosystems Engineering, 93(2), 199–204p.

    Article  Google Scholar 

  • Ravichandran, K., Saw, N. M. M. T., Mohdaly, A. A., Gabr, A. M., Kastell, A., Riedel, H., Knorr, D., & Smetanska, I. (2013). Impact of processing of red beet on betalain content and antioxidant activity. Food Research International, 50(2), 670–675.

    Article  CAS  Google Scholar 

  • Roselló-Soto, E., Barba, F. J., Parniakov, O., Galanakis, C. M., Lebovka, N., Grimi, N., & Vorobiev, E. (2015). High voltage electrical discharges, pulsed electric field, and ultrasound assisted extraction of protein and phenolic compounds from olive kernel. Food and Bioprocess Technology, 8(4), 885–894.

    Article  Google Scholar 

  • Sabanci, S., Çevik, M., & Göksu, A. (2021). Investigation of time effect on pectin production from citrus wastes with ohmic heating assisted extraction process. Journal of Food Process Engineering, 44, e13689.

    Article  CAS  Google Scholar 

  • Saberian, H., Hamidi-Esfahani, Z., Gavlighi, H. A., & Barzegar, M. (2017). Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chemical Engineering and Processing: Process Intensification, 117, 154–161.

    Article  CAS  Google Scholar 

  • Sapers, G. M., & Hornstein, J. S. (1979). Varietal differences in colorant properties and stability of red beet pigments. Journal of Food Science, 44(4), 1245–1248.

    Article  CAS  Google Scholar 

  • Sastry, S. (1992). A model for heating of liquid-particle mixtures in a continuous flow ohmic heater. Journal of Food Process Engineering, 15(4), 263–278.

    Article  Google Scholar 

  • Singer, J. W., & Von Elbe, J. H. (1980). Degradation rates of vulgaxanthine I. Journal of Food Science, 45(3), 489–491p.

    Article  CAS  Google Scholar 

  • Skudder, P., & Biss, C. (1987). Aseptic processing of food products using ohmic heating. Chemical Engineer (london), 433, 26–28.

    CAS  Google Scholar 

  • Stintzing, F. C., Schieber, A., & Carle, R. (2003). Evaluation of colour properties and chemical quality parameters of cactus juices. European Food Research and Technology, 216(4), 303–311.

    Article  CAS  Google Scholar 

  • Stinzing, F. C., & Carle, R. (2008). N-heterocyclic pigments: Betalains. In C. Socaciu (Ed.), Food colorants: Chemical and functional properties (pp. 87–93). CRC Press.

    Google Scholar 

  • Tempest, P. (1995). Ohmic heating systems. APV Processed Food Sector Process Manual Section-9. Electrical Heating, 1, 4.

    Google Scholar 

  • Zhang, L., & Fryer, P. J. (1993). Models for the electrical heating of solid–liquid mixtures. Chemical Engineering Science, 48, 633–643.

    Article  CAS  Google Scholar 

  • Wang, W. C. (1995). Ohmic heating of foods: Physical properties and applications (Doctoral dissertation, The Ohio State University).

Download references

Funding

The present study was a part of the MSc thesis “The use of OH assistance in the extraction of color compounds from red beetroot” and financially supported by Ege University Scientific Research Projects (Project No. BAP- FYL-2019-21153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buse Melek Cabas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabas, B.M., Icier, F. Ohmic Heating–Assisted Extraction of Natural Color Matters from Red Beetroot. Food Bioprocess Technol 14, 2062–2077 (2021). https://doi.org/10.1007/s11947-021-02698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02698-9

Keywords

Navigation