Skip to main content
Log in

Green Solvents to Value Annona muricata L. Leaves as Antioxidants Source: Process Optimization and Potential as a Natural Food Additive

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The development of a green route to obtain bioactive compounds is of great interest, contributing to the value of underused matrices such as the Soursop leaves.

Methods

Deep eutectic solvents (DES) using cholinium chloride as HBA, and alcohols and sugars as HBD, were combined with the ultrasound-assisted solid–liquid extraction (UA-SLE) to obtain bioactive compounds from soursop leaves. The solvent effect, temperature, and time of the process were evaluated.

Results

The better process conditions were 45 °C and 2 h considering the total phenolic content (TPC), antioxidant activity of the extracts and process energy cost. Among all evaluated solvents, those composed of glycerol and xylitol as hydrogen bond donors presented the higher extraction indexes. The main compounds on the extracts were rutin and catechin as determined by HPLC-DAD. DES demonstrated a protective effect against the thermal degradation of the bioactive compounds. Lastly, considering the meaningful antioxidant activity of the extracts and the DES protective effect, they were applied as a natural additive in soybean crude oil resulting in a satisfactory preservation of the oil.

Conclusions

The DES combined with the ultrasound technique allow the obtaining of natural extracts with antioxidant properties which can be applied as a natural supplement to the food industry.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Coria-Téllez, A.V., Montalvo-Gónzalez, E., Yahia, E.M., Obledo-Vázquez, E.N.: Annona muricata: a comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab. J. Chem. 11, 662–691 (2018). https://doi.org/10.1016/j.arabjc.2016.01.004

    Article  Google Scholar 

  2. McLaughlin, J.L.: Paw paw and cancer: annonaceous acetogenins from discovery to commercial products. J. Nat. Prod. 71, 1311–1321 (2008). https://doi.org/10.1021/np800191t

    Article  Google Scholar 

  3. de Moraes, I.V.M., Rabelo, R.S., de L. Pereira, J.A., Hubinger, M.D., Schmidt, F.L.: Concentration of hydroalcoholic extracts of graviola (Annona muricata L.) pruning waste by ultra and nanofiltration: recovery of bioactive compounds and prediction of energy consumption. J. Clean. Prod. 174, 1412–1421 (2018). https://doi.org/10.1016/j.jclepro.2017.11.062

    Article  Google Scholar 

  4. George, V.C., Kumar, D.R.N., Suresh, P.K., Kumar, R.A.: Antioxidant, DNA protective efficacy and HPLC analysis of Annona muricata (soursop) extracts. J. Food Sci. Technol. 52, 2328–2335 (2015). https://doi.org/10.1007/s13197-014-1289-7

    Article  Google Scholar 

  5. Justino, A.B., Miranda, N.C., Franco, R.R., Martins, M.M., Silva, N.M., da, Espindola, F.S.: Annona muricata Linn. leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Biomed. Pharmacother. 100, 83–92 (2018). https://doi.org/10.1016/j.biopha.2018.01.172

    Article  Google Scholar 

  6. Ivanović, M., Razboršek, M.I., Kolar, M.: Innovative extraction techniques using deep eutectic solvents and analytical methods for the isolation and characterization of natural bioactive compounds from plant material. Plants. 9, 1–29 (2020). https://doi.org/10.3390/plants9111428

    Article  Google Scholar 

  7. García, A., Rodríguez-juan, E., Rodríguez-gutiérrez, G., Rios, J.J., Fernández-bolaños, J.: Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem. 197, 554–561 (2016). https://doi.org/10.1016/j.foodchem.2015.10.131

    Article  Google Scholar 

  8. Ruesgas-Ramón, M., Figueroa-Espinoza, M.C., Durand, E.: Application of deep eutectic solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities. J. Agric. Food Chem. (2017). https://doi.org/10.1021/acs.jafc.7b01054

    Article  Google Scholar 

  9. Ünlü, A.E.: Green and non-conventional extraction of bioactive compounds from olive leaves: screening of novel natural deep eutectic solvents and investigation of process parameters. Waste Biomass Valoriz. (2021). https://doi.org/10.1007/s12649-021-01411-3

    Article  Google Scholar 

  10. Athanasiadis, V., Grigorakis, S., Lalas, S., Makris, D.P.: Highly efficient extraction of antioxidant polyphenols from Olea europaea leaves using an eco-friendly glycerol/glycine deep eutectic solvent. Waste Biomass Valoriz. 9, 1985–1992 (2018). https://doi.org/10.1007/s12649-017-9997-7

    Article  Google Scholar 

  11. Jiang, Z.M., Wang, L.J., Gao, Z., Zhuang, B., Yin, Q., Liu, E.H.: Green and efficient extraction of different types of bioactive alkaloids using deep eutectic solvents. Microchem. J. 145, 345–353 (2019). https://doi.org/10.1016/j.microc.2018.10.057

    Article  Google Scholar 

  12. Ozturk, B., Parkinson, C., Gonzalez-Miquel, M.: Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep. Purif. Technol. 206, 1–13 (2018). https://doi.org/10.1016/j.seppur.2018.05.052

    Article  Google Scholar 

  13. Zhao, Y., Wang, P., Zheng, W., Yu, G., Li, Z., She, Y., Lee, M.: Three-stage microwave extraction of cumin (Cuminum cyminum L.) seed essential oil with natural deep eutectic solvents. Ind. Crops Prod. 140, 111660 (2019). https://doi.org/10.1016/j.indcrop.2019.111660

    Article  Google Scholar 

  14. Mouratoglou, E., Malliou, V., Makris, D.P.: Novel glycerol-based natural eutectic mixtures and their efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from agri-food waste biomass. Waste Biomass Valoriz. 7, 1377–1387 (2016). https://doi.org/10.1007/s12649-016-9539-8

    Article  Google Scholar 

  15. Wang, L., Weller, C.L.: Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 17, 300–312 (2006). https://doi.org/10.1016/j.tifs.2005.12.004

    Article  Google Scholar 

  16. Tramontin, D.P., Alves, A.I., Bolzan, A., Quadri, M.B.: Mathematical modeling and numerical simulation of the extraction of bioactive compounds from Artocarpus heterophyllus with supercritical CO2. J. Supercrit. Fluids 177, 105353 (2021). https://doi.org/10.1016/j.supflu.2021.105353

    Article  Google Scholar 

  17. Chanioti, S., Tzia, C.: Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innov. Food Sci. Emerg. Technol. 48, 228–239 (2018). https://doi.org/10.1016/j.ifset.2018.07.001

    Article  Google Scholar 

  18. Ivanovic, M., Razboršek, M.I., Košir, I.J., Kolar, M.: Response surface methodology: an optimal design applied for maximum ultrasound-assisted extraction efficiency of phenolic acids from Coriandrum sativum L. J. Appl. Bot. Food Qual. 92, 378–387 (2019). https://doi.org/10.5073/JABFQ.2019.092.050

    Article  Google Scholar 

  19. Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A.S., Abert-Vian, M.: Review of green food processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 41, 357–377 (2017). https://doi.org/10.1016/j.ifset.2017.04.016

    Article  Google Scholar 

  20. Barba, F.J., Zhu, Z., Koubaa, M., Sant’Ana, A.S., Orlien, V.: Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci. Technol. 49, 96–109 (2016). https://doi.org/10.1016/j.tifs.2016.01.006

    Article  Google Scholar 

  21. Corbin, C., Fidel, T., Leclerc, E.A., Barakzoy, E., Sagot, N., Falguiéres, A., Renouard, S., Blondeau, J.P., Ferroud, C., Doussot, J., Lainé, E., Hano, C.: Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds. Ultrason. Sonochem. 26, 176–185 (2015). https://doi.org/10.1016/j.ultsonch.2015.02.008

    Article  Google Scholar 

  22. Aguilar-Hernández, G., de Lourdes García-Magaña, M., de los Ángeles Vivar-Vera, M., Sáyago-Ayerdi, S.G., Sánchez-Burgos, J.A., Morales-Castro, J., Anaya-Esparza, L.M., González, E.M.: Optimization of ultrasound-assisted extraction of phenolic compounds from Annona muricata by-products and pulp. Molecules (2019). https://doi.org/10.3390/molecules24050904

    Article  Google Scholar 

  23. Dai, Y., Witkamp, G.-J.J., Verpoorte, R., Choi, Y.H.: Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal. Chem. 85, 6272–6278 (2013). https://doi.org/10.1021/ac400432p

    Article  Google Scholar 

  24. Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    Google Scholar 

  25. Brand-Williams, W., Cuvelier, M.E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Technol. 28, 25–30 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  26. Benzie, I.F.F., Strain, J.J.: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76 (1996). https://doi.org/10.1006/abio.1996.0292

    Article  Google Scholar 

  27. Prommuak, C., De-Eknamkul, W., Shotipruk, A.: Extraction of flavonoids and carotenoids from Thai silk waste and antioxidant activity of extracts. Sep. Purif. Technol. 62, 444–448 (2008). https://doi.org/10.1016/j.seppur.2008.02.020

    Article  Google Scholar 

  28. Belmiro, T.M.C., Pereira, C.F., Paim, A.P.S.: Red wines from South America: content of phenolic compounds and chemometric distinction by origin. Microchem. J. 133, 114–120 (2017). https://doi.org/10.1016/j.microc.2017.03.018

    Article  Google Scholar 

  29. Dai, Y., Verpoorte, R., Choi, Y.H.: Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem. 159, 116–121 (2014). https://doi.org/10.1016/j.foodchem.2014.02.155

    Article  Google Scholar 

  30. Zannou, O., Koca, I.: Optimization and stabilization of the antioxidant properties from Alkanet (Alkanna tinctoria) with natural deep eutectic solvents. Arab. J. Chem. 13, 6437–6450 (2020). https://doi.org/10.1016/j.arabjc.2020.06.002

    Article  Google Scholar 

  31. INSTITUTO ADOLFO LUTZ (IAL). Métodos físico-químicos para análise de alimentos. 4 ed. Brasília: ANVISA, 2005.

  32. Assumpção, C.F., Nunes, I.L., Mendonça, T.A., Bortolin, R.C., Jablonski, A., Flôres, S.H., De Oliveira Rios, A.: Bioactive compounds and stability of organic and conventional Vitis labrusca grape seed oils. J. Am. Oil Chem. Soc. 93, 115–124 (2016). https://doi.org/10.1007/s11746-015-2742-0

    Article  Google Scholar 

  33. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V.: Novel solvent properties of choline chloride/urea mixtures (2003). https://doi.org/10.1039/B210714G

    Article  Google Scholar 

  34. Shahbaz, K., Mjalli, F.S., Hashim, M.A., Alnashef, I.M.: Prediction of deep eutectic solvents densities at different temperatures. Thermochim. Acta. 515, 67–72 (2011). https://doi.org/10.1016/j.tca.2010.12.022

    Article  Google Scholar 

  35. Bakhtyari, A., Haghbakhsh, R., Duarte, A.R.C., Raeissi, S.: A simple model for the viscosities of deep eutectic solvents. Fluid Phase Equilib. (2020). https://doi.org/10.1016/j.fluid.2020.112662

    Article  Google Scholar 

  36. Wojeicchowski, J.P., Marques, C., Igarashi-Mafra, L., Coutinho, J.A.P., Mafra, M.R.: Extraction of phenolic compounds from rosemary using choline chloride–based deep eutectic solvents. Sep. Purif. Technol. (2021). https://doi.org/10.1016/j.seppur.2020.117975

    Article  Google Scholar 

  37. Goltz, C., Ávila, S., Barbieri, J.B., Igarashi-Mafra, L., Mafra, M.R.: Ultrasound-assisted extraction of phenolic compounds from Macela (Achyrolcine satureioides) extracts. Ind. Crops Prod. 115, 227–234 (2018). https://doi.org/10.1016/j.indcrop.2018.02.013

    Article  Google Scholar 

  38. Rodriguez Rodriguez, N., Van Den Bruinhorst, A., Kollau, L.J.B.M., Kroon, M.C., Binnemans, K.: Degradation of deep-eutectic solvents based on choline chloride and carboxylic acids. ACS Sustain. Chem. Eng. 7, 11521–11528 (2019). https://doi.org/10.1021/acssuschemeng.9b01378

    Article  Google Scholar 

  39. Chanioti, S., Tzia, C.: Evaluation of ultrasound assisted and conventional methods for production of olive pomace oil enriched in sterols and squalene. LWT 99, 209–216 (2019). https://doi.org/10.1016/j.lwt.2018.09.068

    Article  Google Scholar 

  40. Ali, M.C., Chen, J., Zhang, H., Li, Z., Zhao, L., Qiu, H.: Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta 203, 16–22 (2019). https://doi.org/10.1016/j.talanta.2019.05.012

    Article  Google Scholar 

  41. Liu, Y., Li, J., Fu, R., Zhang, L., Wang, D., Wang, S.: Industrial crops & products enhanced extraction of natural pigments from Curcuma longa L. using natural deep eutectic solvents. Ind. Crop. Prod. 140, 111620 (2019). https://doi.org/10.1016/j.indcrop.2019.111620

    Article  Google Scholar 

  42. Yingyuen, P., Sukrong, S., Phisalaphong, M.: Industrial crops & products isolation, separation and purification of rutin from banana leaves (Musa balbisiana). Ind. Crop. Prod. 149, 112307 (2020). https://doi.org/10.1016/j.indcrop.2020.112307

    Article  Google Scholar 

  43. Donlao, N., Ogawa, Y.: LWT - Food Science and Technology The influence of processing conditions on catechin, caffeine and chlorophyll contents of green tea (Camelia sinensis) leaves and infusions. LWT - Food Sci. Technol. 116, 108567 (2019). https://doi.org/10.1016/j.lwt.2019.108567

    Article  Google Scholar 

  44. Vázquez-González, M., Fernández-Prior, Á., Bermúdez Oria, A., Rodríguez-Juan, E.M., Pérez-Rubio, A.G., Fernández-Bolaños, J., Rodríguez-Gutiérrez, G.: Utilization of strawberry and raspberry waste for the extraction of bioactive compounds by deep eutectic solvents. LWT - Food Sci. Technol. 130, 109645 (2020). https://doi.org/10.1016/j.lwt.2020.109645

    Article  Google Scholar 

  45. Blasi, F., Cossignani, L.: An overview of natural extracts with antioxidant activity for the improvement of the oxidative stability and shelf life of edible oils. Processes (2020). https://doi.org/10.3390/PR8080956

    Article  Google Scholar 

Download references

Funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)—Finance Code 001. F.O. Farias acknowledges CAPES and Fundação Araucária for the post-doctoral fellowship (Grant No. 88887.354435/2019-00). Professors M.R. Mafra and L. Igarashi-Mafra are grateful to the Brazilian National Council for Scientific and Technological Development (CNPq - Grant Nos. 310182/2018-2 and 308517/2018-0, respectively).

Author information

Authors and Affiliations

Authors

Contributions

FCL: Conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization, writing—original draft. FOF: Conceptualization, methodology, data curation, formal analysis, writing—review & editing. WdA: Sample acquisition, methodology. ATT: Methodology, data curation, formal analysis. MRM: Conceptualization, project administration, resources, software, validation, visualization, funding acquisition, writing—review & editing. LI-M: Project administration, resources, software, validation, visualization, funding acquisition, writing—review & editing.

Corresponding authors

Correspondence to Fabiane Oliveira Farias or Marcos R. Mafra.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 852 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal, F.C., Farias, F.O., do Amaral, W. et al. Green Solvents to Value Annona muricata L. Leaves as Antioxidants Source: Process Optimization and Potential as a Natural Food Additive. Waste Biomass Valor 13, 1233–1241 (2022). https://doi.org/10.1007/s12649-021-01581-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01581-0

Keywords

Navigation