Skip to main content

Advertisement

Log in

Enzymatic Hydrolysis Intensification of Lignocellulolytic Enzymes Through Ultrasonic Treatment

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Ultrasound technology is often associated with harmful effects on enzyme reactions, although it is possible to improve the productivity of bioprocesses when suitable conditions are employed. Sugarcane bagasse and straw are the feedstocks widely used in Brazil for second-generation (2G) ethanol production; however, the lignocellulose biomass conversion into fermentable sugars through the enzymatic route is not yet fully optimized. Lignocellulolytic enzymes represent a significant part of the costs related to 2G ethanol production. Nonetheless, they exhibit great potential for cost reduction due to improved enzyme features: mainly increment of its activity and an increase of hydrolysis yield. This enzymatic hydrolysis of feedstock can be enhanced by green technology ultrasound application’s combined action on the enzymes and their substrates. The mixed action increases the lignocellulose saccharification; hence, it is considered a promising alternative for fermentable sugar release. The process optimization using green approaches, such as ultrasound and enzymatic treatment, can boost the sugar yield, thus emphasizing the importance of steps integration towards biomass conversion. This review attempts to provide an overview of the effects of ultrasound treatment on lignocellulolytic enzymes used in the 2G ethanol production and those of the process intensification through an unprecedented bibliometric search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nadar SS, Rathod VK (2017) Ultrasound assisted intensification of enzyme activity and its properties: a mini-review. World J Microbiol Biotechnol 33:170. https://doi.org/10.1007/s11274-017-2322-6

    Article  CAS  PubMed  Google Scholar 

  2. Lin D, Zhang Q, Xiao L et al (2020) Effects of ultrasound on functional properties, structure and glycation properties of proteins: a review. Crit Rev Food Sci Nutr 1–11. https://doi.org/10.1080/10408398.2020.1778632

  3. International Energy Agency (IEA) (2020) Bioenergy power generation. https://www.iea.org/reports/bioenergy-power-generation Paris. Accessed 30 Aug 2021

  4. Karimi M, Jenkins B, Stroeve P (2014) Ultrasound irradiation in the production of ethanol from biomass. Renew Sustain Energy Rev 40:400–421. https://doi.org/10.1016/J.RSER.2014.07.151

    Article  CAS  Google Scholar 

  5. Zabed H, Sahu JN, Suely A et al (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sustain Energy Rev 71:475–501. https://doi.org/10.1016/j.rser.2016.12.076

    Article  CAS  Google Scholar 

  6. Liu C-G, Xiao Y, Xia X-X et al (2019) Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol Adv 37:491–504. https://doi.org/10.1016/J.BIOTECHADV.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  7. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353. https://doi.org/10.1007/s13205-014-0246-5

    Article  PubMed  Google Scholar 

  8. Brahim M, El Kantar S, Boussetta N et al (2016) Delignification of rapeseed straw using innovative chemo-physical pretreatments. Biomass Bioenergy 95:92–98. https://doi.org/10.1016/j.biombioe.2016.09.019

    Article  CAS  Google Scholar 

  9. Subhedar PB, Ray P, Gogate PR (2018) Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation. Ultrason Sonochem 40:140–150. https://doi.org/10.1016/j.ultsonch.2017.01.030

    Article  CAS  PubMed  Google Scholar 

  10. Sharma V, Nargotra P, Sharma S, Bajaj BK (2021) Efficacy and functional mechanisms of a novel combinatorial pretreatment approach based on deep eutectic solvent and ultrasonic waves for bioconversion of sugarcane bagasse. Renew Energy 163:1910–1922. https://doi.org/10.1016/j.renene.2020.10.101

    Article  CAS  Google Scholar 

  11. Suresh T, Sivarajasekar N, Balasubramani K et al (2020) Process intensification and comparison of bioethanol production from food industry waste (potatoes) by ultrasonic assisted acid hydrolysis and enzymatic hydrolysis: statistical modelling and optimization. Biomass Bioenergy 142:105752. https://doi.org/10.1016/J.BIOMBIOE.2020.105752

    Article  CAS  Google Scholar 

  12. Lynd LR, Liang X, Biddy MJ et al (2017) Cellulosic ethanol: status and innovation. Curr Opin Biotechnol 45:202–211. https://doi.org/10.1016/j.copbio.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  13. de Silvello MA, C, Martínez J, Goldbeck R, (2019) Increase of reducing sugars release by enzymatic hydrolysis of sugarcane bagasse intensified by ultrasonic treatment. Biomass Bioenergy 122:481–489. https://doi.org/10.1016/j.biombioe.2019.01.032

    Article  CAS  Google Scholar 

  14. Treichel H, Fongaro G, Scapini T et al (2020) Structure of residual biomass characterization. In: Treichel H, Fongaro G, Scapini T et al (eds) Utilizing biomass in biotechnology: a circular approach discussing the pretreatment of biomass, its applications and economic considerations, 1st edn. Springer International Publishing, Cham, pp 7–18

    Chapter  Google Scholar 

  15. Barbosa FC, Silvello MA, Goldbeck R (2020) Cellulase and oxidative enzymes: new approaches, challenges and perspectives on cellulose degradation for bioethanol production. Biotechnol Lett. https://doi.org/10.1007/s10529-020-02875-4

    Article  PubMed  Google Scholar 

  16. Treichel H, Fongaro G, Scapini T et al (2020) Waste biomass pretreatment methods. In: Treichel H, Fongaro G, Scapini T et al (eds) Utilizing biomass in biotechnology, 1st edn. Springer International Publishing, Cham, pp 19–48

    Chapter  Google Scholar 

  17. Maran JP, Priya B, Al-Dhabi NA et al (2017) Ultrasound assisted citric acid mediated pectin extraction from industrial waste of Musa balbisiana. Ultrason Sonochem 35:204–209. https://doi.org/10.1016/J.ULTSONCH.2016.09.019

    Article  CAS  PubMed  Google Scholar 

  18. Ponmurugan K, Al-Dhabi NA, Maran JP et al (2017) Ultrasound assisted pectic polysaccharide extraction and its characterization from waste heads of Helianthus annus. Carbohydr Polym 173:707–713. https://doi.org/10.1016/J.CARBPOL.2017.06.018

    Article  CAS  PubMed  Google Scholar 

  19. Rokhina EV, Lens P, Virkutyte J (2009) Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol 27:298–306. https://doi.org/10.1016/j.tibtech.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  20. Gogate PR, Kabadi AM (2009) A review of applications of cavitation in biochemical engineering/biotechnology. Biochem Eng J 44:60–72. https://doi.org/10.1016/j.bej.2008.10.006

    Article  CAS  Google Scholar 

  21. Umego EC, He R, Ren W et al (2021) Ultrasonic-assisted enzymolysis: principle and applications. Process Biochem 100:59–68. https://doi.org/10.1016/J.PROCBIO.2020.09.033

    Article  CAS  Google Scholar 

  22. Li M, Li J, Zhu C (2018) Effect of ultrasound pretreatment on enzymolysis and physicochemical properties of corn starch. Int J Biol Macromol 111:848–856. https://doi.org/10.1016/J.IJBIOMAC.2017.12.156

    Article  CAS  PubMed  Google Scholar 

  23. Satari B, Jaiswal AK (2021) Green fractionation of 2G and 3G feedstocks for ethanol production: advances, incentives and barriers. Curr Opin Food Sci 37:1–9. https://doi.org/10.1016/J.COFS.2020.07.004

    Article  Google Scholar 

  24. Islam MN, Zhang M, Adhikari B (2014) The inactivation of enzymes by ultrasound-a review of potential mechanisms. Food Rev Int 30:1–21. https://doi.org/10.1080/87559129.2013.853772

    Article  CAS  Google Scholar 

  25. Wang Z, Lin X, Li P et al (2012) Effects of low intensity ultrasound on cellulase pretreatment. Bioresour Technol 117:222–227. https://doi.org/10.1016/j.biortech.2012.04.015

    Article  CAS  PubMed  Google Scholar 

  26. Dalagnol LMG, Silveira VCC, da Silva HB et al (2017) Improvement of pectinase, xylanase and cellulase activities by ultrasound: effects on enzymes and substrates, kinetics and thermodynamic parameters. Process Biochem 61:80–87. https://doi.org/10.1016/j.procbio.2017.06.029

    Article  CAS  Google Scholar 

  27. Nguyen TTT, Le VVM (2013) Effects of ultrasound on cellulolytic activity of cellulase complex. Int Food Res J 20:557–563

    CAS  Google Scholar 

  28. Delgado-Povedano MM, Luque de Castro MD (2015) A review on enzyme and ultrasound: a controversial but fruitful relationship. Anal Chim Acta 889:1–21. https://doi.org/10.1016/j.aca.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  29. Prajapat AL, Das P, Gogate PR (2016) A novel approach for intensification of enzymatic depolymerization of carboxymethyl cellulose using ultrasonic and ultraviolet irradiations. Chem Eng J 290:391–399. https://doi.org/10.1016/j.cej.2016.01.074

    Article  CAS  Google Scholar 

  30. Wang D, Yan L, Ma X et al (2018) Ultrasound promotes enzymatic reactions by acting on different targets: enzymes, substrates and enzymatic reaction systems. Int J Biol Macromol 119:453–461. https://doi.org/10.1016/j.ijbiomac.2018.07.133

    Article  CAS  PubMed  Google Scholar 

  31. Subhedar PB, Gogate PR (2014) Enhancing the activity of cellulase enzyme using ultrasonic irradiations. J Mol Catal B Enzym 101:108–114. https://doi.org/10.1016/j.molcatb.2014.01.002

    Article  CAS  Google Scholar 

  32. Szabó OE, Csiszár E (2013) The effect of low-frequency ultrasound on the activity and efficiency of a commercial cellulase enzyme. Carbohydr Polym 98:1483–1489. https://doi.org/10.1016/j.carbpol.2013.08.017

    Article  CAS  PubMed  Google Scholar 

  33. de Silvello MA, C, Martínez J, Goldbeck R, (2020) Low-frequency ultrasound with short application time improves cellulase activity and reducing sugars release. Appl Biochem Biotechnol 191:1042–1055. https://doi.org/10.1007/s12010-019-03148-1

    Article  CAS  Google Scholar 

  34. Ajmal M, Fieg G, Keil F (2016) Analysis of process intensification in enzyme catalyzed reactions using ultrasound. Chem Eng Process Process Intensif 110:106–113. https://doi.org/10.1016/j.cep.2016.10.002

    Article  CAS  Google Scholar 

  35. Bashari M, Eibaid A, Wang J et al (2013) Influence of low ultrasound intensity on the degradation of dextran catalyzed by dextranase. Ultrason Sonochem 20:155–161. https://doi.org/10.1016/J.ULTSONCH.2012.06.010

    Article  CAS  PubMed  Google Scholar 

  36. Ong VZ, Wu TY (2020) An application of ultrasonication in lignocellulosic biomass valorization into bio-energy and bio-based products. Renew Sustain Energy Rev 132:109924. https://doi.org/10.1016/j.rser.2020.109924

    Article  CAS  Google Scholar 

  37. Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev 66:751–774. https://doi.org/10.1016/j.rser.2016.08.038

    Article  CAS  Google Scholar 

  38. Aditiya HB, Mahlia TMI, Chong WT et al (2016) Second generation bioethanol production: a critical review. Renew Sustain Energy Rev 66:631–653. https://doi.org/10.1016/j.rser.2016.07.015

    Article  CAS  Google Scholar 

  39. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875. https://doi.org/10.1016/j.enconman.2010.08.013

    Article  CAS  Google Scholar 

  40. Chen H, Fu X (2016) Industrial technologies for bioethanol production from lignocellulosic biomass. Renew Sustain Energy Rev 57:468–478. https://doi.org/10.1016/j.rser.2015.12.069

    Article  CAS  Google Scholar 

  41. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  CAS  PubMed  Google Scholar 

  42. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467. https://doi.org/10.1016/j.pecs.2012.03.002

    Article  CAS  Google Scholar 

  43. Sindhu R, Gnansounou E, Binod P, Pandey A (2016) Bioconversion of sugarcane crop residue for value added products - an overview. Renew Energy 98:203–215. https://doi.org/10.1016/j.renene.2016.02.057

    Article  CAS  Google Scholar 

  44. Binod P, Gnansounou E, Sindhu R, Pandey A (2019) Enzymes for second generation biofuels: recent developments and future perspectives. Bioresour Technol Rep 5:317–325. https://doi.org/10.1016/j.biteb.2018.06.005

    Article  Google Scholar 

  45. Adsul M, Sandhu SK, Singhania RR et al (2020) Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzyme Microb Technol 133:109442. https://doi.org/10.1016/j.enzmictec.2019.109442

    Article  CAS  PubMed  Google Scholar 

  46. Subhedar PB, Gogate PR (2013) Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficient bioethanol production: a review. Ind Eng Chem Res 52:11816–11828. https://doi.org/10.1021/ie401286z

    Article  CAS  Google Scholar 

  47. Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 52:3563–3580. https://doi.org/10.1021/ie3022785

    Article  CAS  Google Scholar 

  48. Czapela FF, Kubeneck S, Preczeski KP et al (2020) Reactional ultrasonic systems and microwave irradiation for pretreatment of agro-industrial waste to increase enzymatic activity. Bioresour Bioprocess 7:50. https://doi.org/10.21203/rs.3.rs-22357/v3 License

    Article  Google Scholar 

  49. Rao P, Rathod V (2019) Valorization of food and agricultural waste: a step towards greener future. Chem Rec 19:1858–1871. https://doi.org/10.1002/tcr.201800094

    Article  CAS  PubMed  Google Scholar 

  50. Benazzi T, Calgaroto S, Astolfi V et al (2013) Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzyme Microb Technol 52:247–250. https://doi.org/10.1016/j.enzmictec.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  51. Yu CA, Yang CY (2019) Bio-ionic liquid pretreatment and ultrasound-promoted enzymatic hydrolysis of black soybean okara. J Biosci Bioeng 127:767–773. https://doi.org/10.1016/j.jbiosc.2018.12.007

    Article  CAS  PubMed  Google Scholar 

  52. Wang S, Li F, Zhang P et al (2017) Ultrasound assisted alkaline pretreatment to enhance enzymatic saccharification of grass clipping. Energy Convers Manag 149:409–415. https://doi.org/10.1016/j.enconman.2017.07.042

    Article  CAS  Google Scholar 

  53. Bundhoo ZMA, Mohee R (2018) Ultrasound-assisted biological conversion of biomass and waste materials to biofuels: a review. Ultrason Sonochem 40:298–313. https://doi.org/10.1016/J.ULTSONCH.2017.07.025

    Article  CAS  PubMed  Google Scholar 

  54. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696. https://doi.org/10.4061/2011/280696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ferreira NL, Margeot A, Blanquet S, Berrin J-G (2014) Use of cellulases from Trichoderma reesei in the twenty-first century—Part I. In: Gupta VK, Schmoll M, Herrera-Estrella A et al (eds) Biotechnology and Biology of Trichoderma, 1st edn. Elsevier, pp 245–261

    Chapter  Google Scholar 

  56. Kuhad RC, Deswal D, Sharma S et al (2016) Revisiting cellulase production and redefining current strategies based on major challenges. Renew Sustain Energy Rev 55:249–272. https://doi.org/10.1016/j.rser.2015.10.132

    Article  CAS  Google Scholar 

  57. Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev 33:188–203. https://doi.org/10.1016/j.rser.2014.01.077

    Article  CAS  Google Scholar 

  58. Srivastava N, Srivastava M, Mishra PK et al (2018) Applications of fungal cellulases in biofuel production: advances and limitations. Renew Sustain Energy Rev 82:2379–2386. https://doi.org/10.1016/j.rser.2017.08.074

    Article  CAS  Google Scholar 

  59. Liu L, Hao W, Dai X, et al (2020) Enzymolysis kinetics and structural-functional properties of high-intensity ultrasound-assisted alkali pretreatment ovalbumin.https://doi.org/10.1080/10942912.2020.1713152

  60. Huang G, Chen S, Dai C et al (2017) Effects of ultrasound on microbial growth and enzyme activity. Ultrason Sonochem 37:144–149. https://doi.org/10.1016/j.ultsonch.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  61. Luzzi SC, Artifon W, Piovesan B et al (2017) Pretreatment of lignocellulosic biomass using ultrasound aiming at obtaining fermentable sugar. Biocatal Biotransformation 35:161–167. https://doi.org/10.1080/10242422.2017.1310206

    Article  CAS  Google Scholar 

  62. Sui Y, Cui Y, Wang Y et al (2021) (2021) A green and efficient way to improve sugar recovery of wheat straw by ultrasonic-assisted xylanase pretreatment. Biomass Convers Biorefinery 1:1–12. https://doi.org/10.1007/S13399-021-01623-6

    Article  Google Scholar 

  63. Lunelli FC, Sfalcin P, Souza M et al (2014) Ultrasound-assisted enzymatic hydrolysis of sugarcane bagasse for the production of fermentable sugars. Biosyst Eng 124:24–28. https://doi.org/10.1016/j.biosystemseng.2014.06.004

    Article  Google Scholar 

  64. Utekar PG, Kininge MM, Gogate PR (2021) Intensification of delignification and enzymatic hydrolysis of orange peel waste using ultrasound for enhanced fermentable sugar production. Chem Eng Process - Process Intensif 168:108556. https://doi.org/10.1016/j.cep.2021.108556

    Article  CAS  Google Scholar 

  65. Subhedar PB, Babu NR, Gogate PR (2015) Intensification of enzymatic hydrolysis of waste newspaper using ultrasound for fermentable sugar production. Ultrason Sonochem 22:326–332. https://doi.org/10.1016/j.ultsonch.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  66. Patil RS, Joshi SM, Gogate PR (2019) Intensification of delignification of sawdust and subsequent enzymatic hydrolysis using ultrasound. Ultrason Sonochem 58:104656. https://doi.org/10.1016/j.ultsonch.2019.104656

    Article  CAS  PubMed  Google Scholar 

  67. Sunkar B, Kannoju B, Bhukya B (2020) Optimized production of xylanase by Penicillium purpurogenum and ultrasound impact on enzyme kinetics for the production of monomeric sugars from pretreated corn cobs. Front Microbiol 11:772. https://doi.org/10.3389/fmicb.2020.00772

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228. https://doi.org/10.1016/S1369-5274(03)00056-0

    Article  CAS  PubMed  Google Scholar 

  69. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23. https://doi.org/10.1016/j.femsre.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  70. Méndez-Líter JA, de Eugenio LI, Nieto-Domínguez M et al (2021) Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: a review. Bioresour. Technol. 324:124623

    Article  Google Scholar 

  71. Li J, Zhou P, Liu H et al (2014) Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies. Bioresour Technol 155:258–265. https://doi.org/10.1016/j.biortech.2013.12.113

    Article  CAS  PubMed  Google Scholar 

  72. Hou F, Fan L, Ma X et al (2018) Degradation of carboxymethylcellulose using ultrasound and β-glucanase: pathways, kinetics and hydrolysates’ properties. Carbohydr Polym 201:514–521. https://doi.org/10.1016/J.CARBPOL.2018.07.092

    Article  CAS  PubMed  Google Scholar 

  73. Sulaiman AZ, Ajit A (2013) Ultrasound mediated enzymatic hydrolysis of cellulose and carboxymethyl cellulose.https://doi.org/10.1002/btpr.1786

  74. Gasparotto JM, Werle LB, Mainardi MA et al (2015) Ultrasound-assisted hydrolysis of sugarcane bagasse using cellulolytic enzymes by direct and indirect sonication. Biocatal Agric Biotechnol 4:480–485. https://doi.org/10.1016/j.bcab.2015.07.006

    Article  Google Scholar 

  75. Szabo OE, Csiszar E (2017) Some factors affecting efficiency of the ultrasound-aided enzymatic hydrolysis of cotton cellulose. Carbohydr Polym 156:357–363. https://doi.org/10.1016/j.carbpol.2016.09.039

    Article  CAS  PubMed  Google Scholar 

  76. Cano R, Pérez-Elvira SI, Fdz-Polanco F (2015) Energy feasibility study of sludge pretreatments: a review. Appl Energy 149:176–185. https://doi.org/10.1016/J.APENERGY.2015.03.132

    Article  CAS  Google Scholar 

  77. Barjoveanu G, Pătrăuțanu O-A, Teodosiu C (2020) Volf I (2020) Life cycle assessment of polyphenols extraction processes from waste biomass. Sci Rep 101(10):1–12. https://doi.org/10.1038/s41598-020-70587-w

    Article  CAS  Google Scholar 

  78. Silva JRF, Cantelli KC, Soares MBA et al (2015) Enzymatic hydrolysis of non-treated sugarcane bagasse using pressurized liquefied petroleum gas with and without ultrasound assistance. Renew Energy 83:674–679. https://doi.org/10.1016/j.renene.2015.04.065

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank National Council for Scientific and Technological Development (CNPq), Research Foundation of the State of Rio Grande do Sul (FAPERGS), São Paulo Research Foundation (FAPESP), and Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil) (Finance code 001) for the financial support and Espaço da Escrita – Pró-Reitoria de Pesquisa – UNICAMP, for the language services provided.

Funding

This work was supported by FAPESP (Grant numbers 2015/20630–4, 2018/20787–9, and 2019/08542–3), FAPERGS, CAPES, and CNPq (productivity grant 307014/2020-7).

Author information

Authors and Affiliations

Authors

Contributions

Maria Augusta de Carvalho Silvello, Aline Frumi Camargo, and Thamarys Scapini conducted the literature search. Maria Augusta de Carvalho Silvello had the idea for the article and conducted the bibliometric investigation. Shukra Raj Paudel, Helen Treichel, and Rosana Goldbeck critically revised the work.

Corresponding author

Correspondence to Rosana Goldbeck.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvello, M.A.d., Camargo, A.F., Scapini, T. et al. Enzymatic Hydrolysis Intensification of Lignocellulolytic Enzymes Through Ultrasonic Treatment. Bioenerg. Res. 15, 875–888 (2022). https://doi.org/10.1007/s12155-021-10334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10334-9

Keywords

Navigation