Skip to main content
Log in

Cyclodextrins as high-performance green co-solvents in the aqueous extraction of polyphenols and anthocyanin pigments from solid onion waste

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This investigation was carried out with the scope to examine three commonly used cyclodextrins (CDs), β-cyclodextrin (β-CD), methyl β-cyclodextrin (m-β-CD) and 2-hydroxypropyl β-cyclodextrin (HP-β-CD) as green co-solvents for the effective extraction of polyphenols and pigment from onion solid wastes (OSW). Efficiency appraisal was based on the “extraction efficiency index” (Iee), a parameter established to readily assess the ability of a CD to boost aqueous polyphenol extraction. m-β-CD was found to be the most efficient, giving Iee of 3.39 and 0.073 mg μmolCD−1 for total polyphenols and total pigments, respectively. Response surface optimization revealed that both m-β-CD and HP-β-CD required almost identical time and temperature conditions for maximized polyphenol recovery, but major differences were found for pigment extraction. β-CD was the least efficient in extracting total polyphenols, but it displayed a satisfactory effectiveness in pigment extraction. The antiradical activity and ferric-reducing power of the extracts generated with m-β-CD and HP-β-CD were comparable to those of hydroethanolic and hydroglycerolic extracts. Both these CDs were also more efficient than β-CD in extracting spiraeoside and quercetin, but β-CD exhibited higher efficiency for anthocyanin extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lizárraga-Velázquez CE, Leyva-López N, Hernández C, Gutiérrez-Grijalva EP, Salazar-Leyva JA, Osuna-Ruíz I, Martínez-Montaño E, Arrizon J, Guerrero A, Benitez-Hernández A (2020) Antioxidant molecules from plant waste: extraction techniques and biological properties. Processes 8:1566

    Article  CAS  Google Scholar 

  2. Ben-Othman S, Jõudu I, Bhat R (2020) Bioactives from agri-food wastes: present insights and future challenges. Molecules 25:510

    Article  CAS  PubMed Central  Google Scholar 

  3. Burlini I, Sacchetti G (2020) Secondary bioactive metabolites from plant-derived food byproducts through ecopharmacognostic approaches: a bound phenolic case study. Plants 9:1060

    Article  PubMed Central  Google Scholar 

  4. Ren F, Nian Y, Perussello CA (2020) Effect of storage, food processing and novel extraction technologies on onions flavonoid content: a review. Food Res Inter. https://doi.org/10.1016/j.foodres.2019.108953

    Article  Google Scholar 

  5. Ly TN, Hazama C, Shimoyamada M, Ando H, Kato K, Yamauchi R (2005) Antioxidative compounds from the outer scales of onion. J Agric Food Chem 53:8183–8189

    Article  CAS  PubMed  Google Scholar 

  6. Ramos FA, Takaishi Y, Shirotori M, Kawaguchi Y, Tsuchiya K, Shibata H, Higuti T, Tadokoro T, Takeuchi M (2006) Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin. J Agric Food Chem 54:3551–3557

    Article  CAS  PubMed  Google Scholar 

  7. Osman A, Makris DP (2010) Comparison of fisetin and quercetin oxidation with a cell-free extract of onion trimmings and peel, plant waste, containing peroxidase enzyme: a further insight into flavonol degradation mechanism. Inter J Food Sci Technol 45:2265–2271

    Article  CAS  Google Scholar 

  8. Moussouni S, Makris DP (2014) Optimisation of onion peroxidase-catalysed formation of aureusidin using 2’, 4’, 6’, 3, 4-pentahydroxy chalcone as substrate. J BioSci Biotech 3(2):141–146

    Google Scholar 

  9. Sharma K, Mahato N, Nile SH, Lee ET, Lee YR (2016) Economical and environmentally-friendly approaches for usage of onion (Allium cepa L.) waste. Food Function 7:3354–3369

    Article  CAS  PubMed  Google Scholar 

  10. Kefalas P, Makris D (2006) Exploitation of agri-food solid wastes for recovery of high added-value compounds: the case of grape pomace and onion peels. Bul USAMV-CN 62:276–281

    Google Scholar 

  11. Makris D, Kefalas P (2015) Kinetic modelling for polyphenol extraction from onion (Allium cepa) solid wastes using acidified water/ethanol mixture. Acta Alim 44:482–492

    Article  CAS  Google Scholar 

  12. Viera V, Piovesan N, Rodrigues J, deOMello R, Prestes R, dos Santos R, deAVaucher R, Hautrive T, Kubota E (2017) Extraction of phenolic compounds and evaluation of the antioxidant and antimicrobial capacity of red onion skin. Inter Food Res J 24(9):990–999

    CAS  Google Scholar 

  13. Jin EY, Lim S, ohKim S, Park Y-S, Jang JK, Chung M-S, Park H, Shim K-S, Choi YJ (2011) Optimization of various extraction methods for quercetin from onion skin using response surface methodology. Food Sci Biotech 20:1727–1733

    Article  CAS  Google Scholar 

  14. Katsampa P, Valsamedou E, Grigorakis S, Makris DP (2015) A green ultrasound-assisted extraction process for the recovery of antioxidant polyphenols and pigments from onion solid wastes using Box-Behnken experimental design and kinetics. Ind Crops Prod 77:535–543

    Article  CAS  Google Scholar 

  15. Campone L, Celano R, Piccinelli AL, Pagano I, Carabetta S, Di Sanzo R, Russo M, Ibañez E, Cifuentes A, Rastrelli L (2018) Response surface methodology to optimize supercritical carbon dioxide/co-solvent extraction of brown onion skin by-product as source of nutraceutical compounds. Food Chem 269:495–502

    Article  CAS  PubMed  Google Scholar 

  16. Munir M, Kheirkhah H, Baroutian S, Quek SY, Young BR (2018) Subcritical water extraction of bioactive compounds from waste onion skin. J Clean Prod 183:487–494

    Article  CAS  Google Scholar 

  17. Stefou I, Grigorakis S, Loupassaki S, Makris DP (2019) Development of sodium propionate-based deep eutectic solvents for polyphenol extraction from onion solid wastes. Clean Technol Environ Pol 21:1563–1574

    Article  CAS  Google Scholar 

  18. Jansook P, Ogawa N, Loftsson T (2018) Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Inter J Pharm 535:272–284

    Article  CAS  Google Scholar 

  19. Chemat F, Abert-Vian M, Fabiano-Tixier AS, Strube J, Uhlenbrock L, Gunjevic V, Cravotto G (2019) Green extraction of natural products. Origins, current status, and future challenges. Trends Anal Chem 118:248–263

    Article  CAS  Google Scholar 

  20. Chemat F, Abert Vian M, Fabiano-Tixier AS, Nutrizio M, Režek Jambrak A, Munekata PES, Lorenzo JM, Barba FJ, Binelloe A, Cravotto G (2020) A review of sustainable and intensified techniquesfor extraction of food and natural products. Green Chem 22:2325–2353

    Article  CAS  Google Scholar 

  21. Ratnasooriya CC, Rupasinghe HV (2012) Extraction of phenolic compounds from grapes and their pomace using β-cyclodextrin. Food Chem 134:625–631

    Article  CAS  PubMed  Google Scholar 

  22. Rajha HN, Chacar S, Afif C, Vorobiev E, Louka N, Maroun RG (2015) β-Cyclodextrin-assisted extraction of polyphenols from vine shoot cultivars. J Agric Food Chem 63:3387–3393

    Article  CAS  PubMed  Google Scholar 

  23. Lakka A, Lalas S, Makris DP (2020) Development of a low-temperature and high-performance green extraction process for the recovery of polyphenolic phytochemicals from waste potato peels using hydroxypropyl β-cyclodextrin. Appl Sci 10:3611

    Article  CAS  Google Scholar 

  24. Lakka A, Lalas S, Makris DP (2020) Hydroxypropyl-β-Cyclodextrin as a green co-solvent in the aqueous extraction of polyphenols from waste orange peels. Beverages 6:50

    Article  CAS  Google Scholar 

  25. Grigorakis S, Benchennouf A, Halahlah A, Makris DP (2020) High-performance green extraction of polyphenolic antioxidants from Salvia fruticosa using cyclodextrins: optimization, kinetics, and composition. Appl Sci 10:3447

    Article  CAS  Google Scholar 

  26. Saokham P, Muankaew C, Jansook P, Loftsson T (2018) Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 23:1161

    Article  PubMed Central  CAS  Google Scholar 

  27. Karageorgou I, Grigorakis S, Lalas S, Mourtzinos I, Makris DP (2018) Incorporation of 2-hydroxypropyl β-cyclodextrin in a biomolecule-based low-transition temperature mixture (LTTM) boosts efficiency of polyphenol extraction from Moringa oleifera Lam leaves. J Applied Res Med Arom Plants 9:62–69

    Google Scholar 

  28. Lakka A, Karageorgou I, Kaltsa O, Batra G, Bozinou E, Lalas S, Makris D (2019) Polyphenol extraction from Humulus lupulus (hop) using a neoteric glycerol/L-alanine deep eutectic solvent: Optimisation, kinetics and the effect of ultrasound-assisted pretreatment. AgriEngineering 1:403–417

    Article  Google Scholar 

  29. Dourtoglou VG, Mamalos A, Makris DP (2006) Storage of olives (Olea europaea) under CO2 atmosphere: effect on anthocyanins, phenolics, sensory attributes and in vitro antioxidant properties. Food Chem 99:342–349

    Article  CAS  Google Scholar 

  30. Makris DP (2010) Optimisation of anthocyanin recovery from onion (Allium cepa) solid wastes using response surface methodology. J Food Technol 8:183–186

    Article  CAS  Google Scholar 

  31. Makris DP, Rossiter JT (2001) Comparison of quercetin and a non-orthohydroxy flavonol as antioxidants by competing in vitro oxidation reactions. J Agric Food Chem 49:3370–3377

    Article  CAS  PubMed  Google Scholar 

  32. Kicuntod J, Sangpheak K, Mueller M, Wolschann P, Viernstein H, Yanaka S, Kato K, Chavasiri W, Pongsawasdi P, Kungwan N (2018) Theoretical and experimental studies on inclusion complexes of pinostrobin and β-cyclodextrins. Scient Pharmaceut 86:5

    Article  CAS  Google Scholar 

  33. Cai R, Yuan Y, Cui L, Wang Z, Yue T (2018) Cyclodextrin-assisted extraction of phenolic compounds: current research and future prospects. Trends Food Sci Technol 79:19–27

    Article  CAS  Google Scholar 

  34. Gonzalez Pereira A, Carpena M, García Oliveira P, Mejuto JC, Prieto MA, Simal Gandara J (2021) Main applications of cyclodextrins in the food industry as the compounds of choice to form host–guest complexes. Inter J Mol Sci 22:1339

    Article  CAS  Google Scholar 

  35. Athanasiadis V, Grigorakis S, Lalas S, Makris DP (2018) Stability effects of methyl β-cyclodextrin on Olea europaea leaf extracts in a natural deep eutectic solvent. Eur Food Res Technol 244:1783–1792

    Article  CAS  Google Scholar 

  36. Mourtzinos I, Makris DP, Yannakopoulou K, Kalogeropoulos N, Michali I, Karathanos VT (2008) Thermal stability of anthocyanin extract of Hibiscus sabdariffa L. in the presence of β-cyclodextrin. J Agric Food Chem 56:10303–10310

    Article  CAS  PubMed  Google Scholar 

  37. Dong L, Liu M, Chen A, Wang Y, Sun D (2013) Solubilities of quercetin in three β-cyclodextrin derivative solutions at different temperatures. J Mol Liquids 177:204–208

    Article  CAS  Google Scholar 

  38. Zhang QF, Cheung HY, Shangguan X, Zheng G (2012) Structure selective complexation of cyclodextrins with five polyphenols investigated by capillary electrokinetic chromatography. J Separ Sci 35:3347–3353

    Article  CAS  Google Scholar 

  39. Cai C, Liu M, Yan H, Zhao Y, Shi Y, Guo Q, Pei W, Han J, Wang Z (2019) A combined calorimetric, spectroscopic and molecular dynamic simulation study on the inclusion complexation of (E)-piceatannol with hydroxypropyl-β-cyclodextrin in various alcohol+water cosolvents. J Chem Thermodyn 132:341–351

    Article  CAS  Google Scholar 

  40. Mouratoglou E, Malliou V, Makris DP (2016) Novel glycerol-based natural eutectic mixtures and their efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from agri-food waste biomass. Waste Biomass Valor 7:1377–1387

    Article  CAS  Google Scholar 

  41. Kiassos E, Mylonaki S, Makris DP, Kefalas P (2009) Implementation of response surface methodology to optimise extraction of onion (Allium cepa) solid waste phenolics. Innov Food Sci Emerg Technol 10:246–252

    Article  CAS  Google Scholar 

  42. Mourtzinos I, Prodromidis P, Grigorakis S, Makris DP, Biliaderis CG, Moschakis T (2018) Natural food colorants derived from onion wastes: application in a yoghurt product. Electrophoresis 39:1975–1983

    Article  CAS  Google Scholar 

  43. Petersson EV, Liu J, Sjöberg PJ, Danielsson R, Turner C (2010) Pressurized hot water extraction of anthocyanins from red onion: a study on extraction and degradation rates. Anal Chim Acta 663:27–32

    Article  CAS  PubMed  Google Scholar 

  44. Magalhães LM, Segundo MA, Reis S, Lima JL (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 613:1–19

    Article  PubMed  CAS  Google Scholar 

  45. Mercader-Ros M, Lucas-Abellán C, Fortea M, Gabaldón J, Núñez-Delicado E (2010) Effect of HP-β-cyclodextrins complexation on the antioxidant activity of flavonols. Food Chem 118:769–773

    Article  CAS  Google Scholar 

  46. Liu M, Dong L, Chen A, Zheng Y, Sun D, Wang X, Wang B (2013) Inclusion complexes of quercetin with three β-cyclodextrins derivatives at physiological pH: Spectroscopic study and antioxidant activity. Spectrochim Acta Part A: Mol Biomol Spectr 115:854–860

    Article  CAS  Google Scholar 

  47. Güleç K, Demirel M (2016) Characterization and antioxidant activity of quercetin/methyl-β-cyclodextrin complexes. Cur Drug Deliv 13:444–451

    Article  CAS  Google Scholar 

  48. Jullian C, Moyano L, Yanez C, Olea-Azar C (2007) Complexation of quercetin with three kinds of cyclodextrins: an antioxidant study. Spectrochim Acta Part A: Mol Biomol Spectr 67:230–234

    Article  CAS  Google Scholar 

  49. Alvarez-Parrilla E, Laura A, Torres-Rivas F, Rodrigo-Garcia J, González-Aguilar GA (2005) Complexation of apple antioxidants: chlorogenic acid, quercetin and rutin by β-cyclodextrin (β-CD). J Inclus Phenom Macrocycl Chem 53:121–129

    Article  CAS  Google Scholar 

  50. Celik SE, Özyürek M, Güçlü K, Apak R (2015) Antioxidant capacity of quercetin and its glycosides in the presence of β-cyclodextrins: influence of glycosylation on inclusion complexation. J Inclus Phenom Macrocycl Chem 83:309–319

    Article  CAS  Google Scholar 

  51. Budryn G, Nebesny E, Pałecz B, Rachwał-Rosiak D, Hodurek P, Miśkiewicz K, Oracz J, Żyżelewicz D (2014) Inclusion complexes of β-cyclodextrin with chlorogenic acids (CHAs) from crude and purified aqueous extracts of green Robusta coffee beans (Coffea canephora L.). Food Res Inter 61:202–213

    Article  CAS  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris P. Makris.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Statement

I hereby declare that the article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozinou, E., Lakka, A., Poulianiti, K. et al. Cyclodextrins as high-performance green co-solvents in the aqueous extraction of polyphenols and anthocyanin pigments from solid onion waste. Eur Food Res Technol 247, 2831–2845 (2021). https://doi.org/10.1007/s00217-021-03839-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03839-2

Keywords

Navigation