Skip to main content
Log in

Recovery of chlorogenic acid from haskap leaves (Lonicera caerulea) using aqueous two-phase extraction

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The concept of a biorefinery can be applied to the haskap plant (Lonicera caerulea), where the berries are harvested but the leaves are an under-utilized resource. In this study, aqueous two-phase extraction (ATPE) was used to extract chlorogenic acid (CGA) from haskap leaves. The consumption of CGA is associated with health benefits and it is sold as a natural health supplement. Two different aqueous two-phase systems (ATPSs), consisting of ethanol/sodium dihydrogen phosphate (NaH2PO4) and ethanol/potassium phosphate dibasic (K2HPO4), were compared. The factors investigated were salt/ethanol composition and extraction time. The ethanol/NaH2PO4 system had higher yield of 85.03 mg CGA/g leaves, partition coefficient of 40.41, and 92.97% extraction efficiency. The yield from conventional Soxhlet extraction was 109.74 mg CGA/g leaves; however, this required a much longer extraction time of 24 h. LC-HRMS also showed the presence of CGA, and possibly lonicerin, rutin, and diosmin isomers in the leaf extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Data will be provided upon request.

References

  1. Khattab R, Brooks MS-L, Ghanem A (2016) Phenolic analyses of haskap berries (Lonicera caerulea L.): spectrophotometry versus high performance liquid chromatography. Int J Food Prop 19:1708–1725. https://doi.org/10.1080/10942912.2015.1084316

    Article  Google Scholar 

  2. Naugžemys D, Žilinskaitė S, Denkovskij J, et al (2007) RAPD based study of genetic variation and relationships among Lonicera germplasm accessions. Biologija 53(3):34–39

  3. Hummer KE, Pomper KW, Postman J et al (2012). In: Badenes ML, Byrne DH (eds) Emerging fruit crops - fruit breeding. Springer US, Boston, pp 97–147. https://doi.org/10.1007/978-1-4419-0763-9_4

  4. Bors RH (2009) Haskap Breeding & Production: Final Report, January 2009. Agriculture Development Fund. http://www.agriculture.gov.sk.ca/apps/adf/ADFAdminReport/20080042.pdf

  5. Iheshiulo EM-A (2018) Determination of soil and plant nutrient sufficiency levels for haskap (Lonicera caerulea L.). http://hdl.handle.net/10222/73917

  6. Celli GB, Ghanem A, Brooks MSL (2014) Haskap berries (Lonicera caerulea L.)—a critical review of antioxidant capacity and health-related studies for potential value-added products. Food Bioprocess Technol 7:1541–1554. https://doi.org/10.1007/s11947-014-1301-2

    Article  Google Scholar 

  7. Zhao Y (2007) Berry fruit: value-added products for health promotion. CRC press. https://www.routledge.com/Berry-Fruit-Value-Added-Products-for-Health-Promotion/Zhao/p/book/9780849358029

  8. Ferlemi A-V, Lamari FN (2016) Berry leaves: an alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants 5:17. https://doi.org/10.3390/antiox5020017

    Article  Google Scholar 

  9. Rohm H, Brennan C, Turner C, Günther E, Campbell G, Hernando I, Struck S, Kontogiorgos V (2015) Adding value to fruit processing waste: innovative ways to incorporate fibers from berry pomace in baked and extruded cereal-based foods—a SUSFOOD project. Foods 4:690–697. https://doi.org/10.3390/foods4040690

    Article  Google Scholar 

  10. Struck S, Plaza M, Turner C, Rohm H (2016) Berry pomace – a review of processing and chemical analysis of its polyphenols. Int J Food Sci Technol 51:1305–1318. https://doi.org/10.1111/ijfs.13112

    Article  Google Scholar 

  11. Laroze LE, Díaz-Reinoso B, Moure A, Zúñiga ME, Domínguez H (2010) Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. Eur Food Res Technol 231:669–677. https://doi.org/10.1007/s00217-010-1320-9

    Article  Google Scholar 

  12. de Souza DR, Willems JL, Low NH (2019) Phenolic composition and antioxidant activities of saskatoon berry fruit and pomace. Food Chem 290:168–177. https://doi.org/10.1016/j.foodchem.2019.03.077

    Article  Google Scholar 

  13. Dawson JK (2017) Concentration and content of secondary metabolites in fruit and leaves of haskap (Lonicera caerulea L.). https://harvest.usask.ca/handle/10388/7819

  14. Machida K, Asano J, Kikuchi M (1995) Caeruleosides A and B, bis-iridoid glucosides from Lonicera caerulea. Phytochemistry 39:111–114. https://doi.org/10.1016/0031-9422(94)00853-L

    Article  Google Scholar 

  15. Oszmiański J, Wojdyło A, Gorzelany J, Kapusta I (2011) Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. J Agric Food Chem 59:12830–12835. https://doi.org/10.1021/jf203052j

    Article  Google Scholar 

  16. Buricova L, Andjelkovic M, Cermakova A et al (2011) Antioxidant capacities and antioxidants of strawberry, blackberry and raspberry leaves. Czech J Food Sci 29(2):181–189

  17. Ferlemi A-V, Makri OE, Mermigki PG, Lamari FN, Georgakopoulos CD (2016) Quercetin glycosides and chlorogenic acid in highbush blueberry leaf decoction prevent cataractogenesis in vivo and in vitro: Investigation of the effect on calpains, antioxidant and metal chelating properties. Exp Eye Res 145:258–268. https://doi.org/10.1016/j.exer.2016.01.012

    Article  Google Scholar 

  18. Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, FangFang X, Modarresi-Ghazani F, WenHua L, XiaoHui Z (2018) Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother 97:67–74. https://doi.org/10.1016/j.biopha.2017.10.064

    Article  Google Scholar 

  19. Tajik N, Tajik M, Mack I, Enck P (2017) The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr 56:2215–2244. https://doi.org/10.1007/s00394-017-1379-1

    Article  Google Scholar 

  20. Jeszka-Skowron M, Sentkowska A, Pyrzyńska K, De Peña MP (2016) Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. Eur Food Res Technol 242:1403–1409. https://doi.org/10.1007/s00217-016-2643-y

    Article  Google Scholar 

  21. Náthia-Neves G, Alonso E (2021) Valorization of sunflower by-product using microwave-assisted extraction to obtain a rich protein flour: recovery of chlorogenic acid, phenolic content and antioxidant capacity. Food Bioprod Process 125:57–67. https://doi.org/10.1016/j.fbp.2020.10.008

    Article  Google Scholar 

  22. Liu QM, Yang XM, Zhang L, Majetich G (2010) Optimization of ultrasonic-assisted extraction of chlorogenic acid from Folium eucommiae and evaluation of its antioxidant activity. J Med Plant Res 4:2503–2511. https://doi.org/10.5897/JMPR.9000955

    Article  Google Scholar 

  23. Lauritzen E, Maughan T, Black B (2015) Haskap (Blue Honeysuckle) in the Garden. https://digitalcommons.usu.edu/extension_curall/752/

  24. Vongsak B, Sithisarn P, Mangmool S, Thongpraditchote S, Wongkrajang Y, Gritsanapan W (2013) Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind Crop Prod 44:566–571. https://doi.org/10.1016/j.indcrop.2012.09.021

    Article  Google Scholar 

  25. Luque de Castro MD, Priego-Capote F (2010) Soxhlet extraction: past and present panacea. J Chromatogr A 1217:2383–2389. https://doi.org/10.1016/j.chroma.2009.11.027

    Article  Google Scholar 

  26. Yau YK, Ooi CW, Ng E-P, Lan JCW, Ling TC, Show PL (2015) Current applications of different type of aqueous two-phase systems. Bioresour Bioprocess 2:49. https://doi.org/10.1186/s40643-015-0078-0

    Article  Google Scholar 

  27. Grover PK, Ryall RL (2005) Critical appraisal of salting-out and its implications for chemical and biological sciences. Chem Rev 105:1–10. https://doi.org/10.1021/cr030454p

    Article  Google Scholar 

  28. Simental-Martínez J, Montalvo-Hernández B, Rito-Palomares M, Benavides J (2014) Application of aqueous two-phase systems for the recovery of bioactive low-molecular weight compounds. Sep Sci Technol 49:1872–1882. https://doi.org/10.1080/01496395.2014.904878

    Article  Google Scholar 

  29. Tabera J, Guinda Á, Ruiz-Rodríguez A, Señoráns FJ, Ibáñez E, Albi T, Reglero G (2004) Countercurrent supercritical fluid extraction and fractionation of high-added-value compounds from a hexane extract of olive leaves. J Agric Food Chem 52:4774–4779. https://doi.org/10.1021/jf049881%2B

    Article  Google Scholar 

  30. Bampouli A, Kyriakopoulou K, Papaefstathiou G, Louli V, Krokida M, Magoulas K (2014) Comparison of different extraction methods of Pistacia lentiscus var. chia leaves: yield, antioxidant activity and essential oil chemical composition. J Appl Res Med Aromat Plants 1:81–91. https://doi.org/10.1016/j.jarmap.2014.07.001

    Article  Google Scholar 

  31. Routray W (2014) Effect of different extraction methods, environmental and post-harvest factors on yield of phenolic compounds from blueberry leaves. McGill University. https://escholarship.mcgill.ca/concern/theses/47429d523?locale=en

  32. Bimakr M, Rahman RA, Taip FS, Ganjloo A, Salleh LM, Selamat J, Hamid A, Zaidul ISM (2011) Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food Bioprod Process 89:67–72. https://doi.org/10.1016/j.fbp.2010.03.002

    Article  Google Scholar 

  33. Hatti-Kaul R (2000). In: Hatti-Kaul R (ed) Aqueous two-phase systems: methods and protocols. Humana Press, Totowa. https://doi.org/10.1385/1592590284

  34. Sánchez-Rangel JC, Jacobo-Velázquez DA, Cisneros-Zevallos L, Benavides J (2016) Primary recovery of bioactive compounds from stressed carrot tissue using aqueous two-phase systems strategies. J Chem Technol Biotechnol 91:144–154. https://doi.org/10.1002/jctb.4553

    Article  Google Scholar 

  35. Wang T, Xu W-J, Wang S-X, Kou P, Wang P, Wang XQ, Fu YJ (2017) Integrated and sustainable separation of chlorogenic acid from blueberry leaves by deep eutectic solvents coupled with aqueous two-phase system. Food Bioprod Process 105:205–214. https://doi.org/10.1016/j.fbp.2017.07.010

    Article  Google Scholar 

  36. Tan Z, Wang C, Yi Y, Wang H, Li M, Zhou W, Tan S, Li F (2014) Extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L. Gaud) leaf using an ethanol/salt aqueous two-phase system. Sep Purif Technol 132:396–400. https://doi.org/10.1016/j.seppur.2014.05.048

    Article  Google Scholar 

  37. Yang Z, Tan Z, Li F, Li X (2016) An effective method for the extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L.) leaves using acidic ionic liquids. Ind Crop Prod 89:78–86. https://doi.org/10.1016/j.indcrop.2016.05.006

    Article  Google Scholar 

  38. Chong KY, Stefanova R, Zhang J, Brooks MS-L (2020) Aqueous two-phase extraction of bioactive compounds from haskap leaves (Lonicera caerulea): comparison of salt/ethanol and sugar/propanol systems. Sep Purif Technol 252:117399. https://doi.org/10.1016/j.seppur.2020.117399

    Article  Google Scholar 

  39. U.S. Food and Drug Administration (2020) CFR - Code of Federal Regulations Title 21. https://www.ecfr.gov/cgi-bin/text-idx?SID=56ecf6cbc894976e144848106d4104e8&mc=true&tpl=/ecfrbrowse/Title21/21cfr582_main_02.tpl. Accessed 23 Mar 2018

  40. Cienfuegos NEC, Santos PL, García AR, Soares CMF, Lima AS, Souza RL (2017) Integrated process for purification of capsaicin using aqueous two-phase systems based on ethanol. Food Bioprod Process 106:1–10. https://doi.org/10.1016/j.fbp.2017.08.005

    Article  Google Scholar 

  41. Liu X, Mu T, Sun H, Zhang M, Chen J (2013) Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology. Food Chem 141:3034–3041. https://doi.org/10.1016/j.foodchem.2013.05.119

    Article  Google Scholar 

  42. Zhang D-Y, Zu Y-G, Fu Y-J, Wang W, Zhang L, Luo M, Mu FS, Yao XH, Duan MH (2013) Aqueous two-phase extraction and enrichment of two main flavonoids from pigeon pea roots and the antioxidant activity. Sep Purif Technol 102:26–33. https://doi.org/10.1016/j.seppur.2012.09.019

    Article  Google Scholar 

  43. Zhu H, Cao Q, Li C, Mu X (2011) Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents. Carbohydr Res 346:2016–2018. https://doi.org/10.1016/j.carres.2011.05.026

    Article  Google Scholar 

  44. Golunski SM, Sala L, Silva MF, Dallago RM, Mulinari J, Mossi AJ, Brandelli A, Kalil SJ, di Luccio M, Treichel H (2016) Interference of salts used on aqueous two-phase systems on the quantification of total proteins. Int J Biol Macromol 83:30–33. https://doi.org/10.1016/j.ijbiomac.2015.11.056

    Article  Google Scholar 

  45. Hyde AM, Zultanski SL, Waldman JH, Zhong YL, Shevlin M, Peng F (2017) General principles and strategies for salting-out informed by the Hofmeister series. Org Process Res Dev 21:1355–1370. https://doi.org/10.1021/acs.oprd.7b00197

    Article  Google Scholar 

  46. Collins KD (1997) Charge density-dependent strength of hydration and biological structure. Biophys J 72:65–76. https://doi.org/10.1016/S0006-3495(97)78647-8

    Article  Google Scholar 

  47. He F, Li D, Wang D, Deng M (2016) Extraction and purification of quercitrin, hyperoside, rutin, and afzelin from Zanthoxylum Bungeanum Maxim leaves Using an aqueous two-phase system. J Food Sci 81:C1593–C1602. https://doi.org/10.1111/1750-3841.13331

    Article  Google Scholar 

  48. ChemAxon (2019) Chemicalize. https://chemicalize.com/. Accessed 28 Sep 2019

  49. Liu Y, Han J, Wang Y, Lu Y, Zhang G, Sheng C, Yan Y (2013) Selective separation of flavones and sugars from honeysuckle by alcohol/salt aqueous two-phase system and optimization of extraction process. Sep Purif Technol 118:776–783. https://doi.org/10.1016/j.seppur.2013.08.018

    Article  Google Scholar 

  50. Ma F-Y, Gu C-B, Li C-Y, Luo M, Wang W, Zu YG, Li J, Fu YJ (2013) Microwave-assisted aqueous two-phase extraction of isoflavonoids from Dalbergia odorifera T. Chen leaves. Sep Purif Technol 115:136–144. https://doi.org/10.1016/j.seppur.2013.05.003

    Article  Google Scholar 

  51. Vagiri M, Conner S, Stewart D, Andersson SC, Verrall S, Johansson E, Rumpunen K (2015) Phenolic compounds in blackcurrant (Ribes nigrum L.) leaves relative to leaf position and harvest date. Food Chem 172:135–142. https://doi.org/10.1016/j.foodchem.2014.09.041

    Article  Google Scholar 

  52. Durgo K, Belščak-Cvitanović A, Stančić A, Franekić J, Komes D (2012) The bioactive potential of red raspberry (Rubus idaeus L.) leaves in exhibiting cytotoxic and cytoprotective activity on human laryngeal carcinoma and colon adenocarcinoma. J Med Food 15:258–268. https://doi.org/10.1089/jmf.2011.0087

    Article  Google Scholar 

  53. Chong KY, Stefanova R, Zhang J, Brooks MSL (2020) Extraction of bioactive compounds from haskap leaves (Lonicera caerulea) using salt/ethanol aqueous two-phase flotation. Food Bioprocess Technol 13:2131–2144. https://doi.org/10.1007/s11947-020-02553-3

    Article  Google Scholar 

  54. Ma T, Dong H, Lu H, Zhao H, Guo L, Wang X (2018) Preparative separation of caffeoylquinic acid isomers from Lonicerae japonicae Flos by pH-zone-refining counter-current chromatography and a strategy for selection of solvent systems with high sample loading capacities. J Chromatogr A 1578:61–66. https://doi.org/10.1016/j.chroma.2018.10.014

    Article  Google Scholar 

  55. Hu X, Chen L, Shi S, Cai P, Liang X, Zhang S (2016) Antioxidant capacity and phenolic compounds of Lonicerae macranthoides by HPLC-DAD-QTOF-MS/MS. J Pharm Biomed Anal 124:254–260. https://doi.org/10.1016/j.jpba.2016.03.008

    Article  Google Scholar 

  56. Mech-Nowak A, Kruczek M, Kaszycki P et al (2014) Polyphenols, hydroxycarboxylic acids and carotenoids in berries of blue honeysuckle (Lonicera coerulea var. kamtschatica). Przem Chem 93:948–953. https://doi.org/10.12916/przemchem.2014.948

    Article  Google Scholar 

  57. Ma R, Yin Z, Zhang C, Ye W (2010) Chemical constituents from n-butanol extract of the stems of Lonicera japonica. Zhongguo Yaoke Daxue Xuebao 41:333–336

    Google Scholar 

  58. Becker R, Pączkowski C, Szakiel A (2017) Triterpenoid profile of fruit and leaf cuticular waxes of edible honeysuckle Lonicera caerulea var. kamtschatica. Acta Soc Bot Pol 86. https://doi.org/10.5586/asbp.3539

  59. Wu C, Wang F, Liu J, Zou Y, Chen X (2015) A comparison of volatile fractions obtained from Lonicera macranthoides via different extraction processes: ultrasound, microwave, Soxhlet extraction, hydrodistillation, and cold maceration. Integr Med Res 4:171–177. https://doi.org/10.1016/j.imr.2015.06.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Cynthia Swinimer of Lone Tree Farm and Dr. Evie Kemp of Haskapa for assisting in the leaf collection process.

Funding

This work was supported by funding from the Natural Sciences and Engineering Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Su-Ling Brooks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Linna Xie and Kar Yeen Chong are co-first authors.

Supplementary Information

ESM 1

(DOCX 309 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, L., Chong, K.Y., Stefanova, R. et al. Recovery of chlorogenic acid from haskap leaves (Lonicera caerulea) using aqueous two-phase extraction. Biomass Conv. Bioref. 13, 3741–3750 (2023). https://doi.org/10.1007/s13399-021-01524-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01524-8

Keywords

Navigation