Skip to main content

Advertisement

Log in

Membrane distillation for zero liquid discharge during treatment of wastewater from the industry of traditional Chinese medicine: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Zero liquid discharge after treatment of industrial wastewater is a major goal to avoid environmental pollution. For that, membrane distillation appears as an advanced technique to generate pure water and to concentrate recyclable matter. Here, we review membrane distillation with focus on the industry of the traditional Chinese medicine. Membrane distillation has been successfully applied to concentrate fruit juice and herbal bioactive compounds in food and medicine, and to manage brine from gas, oil and desalination industries. Membrane distillation holds many advantages including energy conservation and better rejection of bioactive compounds by comparison with distillation and reverse osmosis. The recent synthesis of superhydrophobic or omniphobic membranes, such as the Janus membrane, allows to decrease wetting and fouling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Adnan S, Hoang M, Wang H, Xie Z (2012) Commercial PTFE membranes for membrane distillation application: effect of microstructure and support material. Desalination 284:297–308

    Article  CAS  Google Scholar 

  • Ahmad S, Marson GV, Zeb W, Rehman WU, Younas M, Farrukh S, Rezakazemi M (2020) Mass transfer modelling of hollow fiber membrane contactor for apple juice concentration using osmotic membrane distillation. Sep Purif Technol 250:117209

    Article  CAS  Google Scholar 

  • Ali A, Quist-Jensen CA, Macedonio F, Drioli E (2016) On Designing of membrane thickness and thermal conductivity for large scale membrane disitllation modules. J Membr Sci Res 2:179–185

    Google Scholar 

  • Altschuh P, Yabansu YC, Hötzer J, Selzer M, Nestler B, Kalidindi SR (2017) Data science approaches for microstructure quantification and feature identification in porous membranes. J Membr Sci 540:88–97

    Article  CAS  Google Scholar 

  • Alves VD, Coelhoso IM (2006) Orange juice concentration by osmotic evaporation and membrane distillation: a comparative study. J Food Eng 74(1):125–133

    Article  Google Scholar 

  • Amutha K, Muthu SS (eds) (2017) Sustainable fibres and textiles. Woodhead Publishing, Oxford, pp 347–366

    Book  Google Scholar 

  • Bagger-Jørgensen R, Meyer AS, Pinelo M, Varming C, Jonsson G (2011) Recovery of volatile fruit juice aroma compounds by membrane technology: sweeping gas versus vacuum membrane distillation. Innov Food Sci Emerg Technol 12:388–397

    Article  Google Scholar 

  • Bagheri M, Akbari A, Mirbagheri SA (2019) Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review. Process Saf Environ Prot 123:229–252

    Article  CAS  Google Scholar 

  • Bahadur N, Bhargava N (2019) Novel pilot scale photocatalytic treatment of textile & dyeing industry wastewater to achieve process water quality and enabling zero liquid discharge. J Water Process Eng 32:100934

    Article  Google Scholar 

  • Boban M, Golovin K, Tobelmann B, Gupte O, Mabry JM, Tuteja A (2018) Smooth, all-solid, low-hysteresis, omniphobic surfaces with enhanced mechanical durability. ACS Appl Mater Interfaces 10(14):11406–11413

    Article  CAS  Google Scholar 

  • Boo C, Lee J, Elimelech M (2016) Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation. Environ Sci Technol 50(22):12275–12282

    Article  CAS  Google Scholar 

  • Bui AV, Nguyen HM, Joachim M (2003) Prediction of water activity of glucose and calcium chloride solutions. J Food Eng 57:243–248

    Article  Google Scholar 

  • Cai M, Hou W, Lv Y, Sun P (2017) Behavior and rejection mechanisms of fruit juice phenolic compounds in model solution during nanofiltration. J Food Eng 195:97–104

    Article  CAS  Google Scholar 

  • Chen Y, Li X-M, Gilron J, Kong D-F, Yin Y, Oren Y, Linder C, He T (2014) CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. J Membr Sci 456:155–161

    Article  Google Scholar 

  • Chen Y, Shi F, Pan L, Li B, Guo L, Zhu H (2016) Membrane flux attenuation and cleaning methods during vacuum membrane distillation for Chinese herbs water extraction. Chin Tradit Patent Med 38(8)

  • Chen Y, Tian M, Li X-M, Wang Y, An AK, Fang J, He T (2017) Anti-wetting behavior of negatively charged superhydrophobic PVDF membranes in direct contact membrane distillation of emulsified wastewaters. J Membr Sci 535:230–238

    Article  CAS  Google Scholar 

  • Chen X, Gao X, Fu K, Qiu M, Xiong F, Ding D, Cui Z, Wang Z, Fan Y, Drioli E (2018) Tubular hydrophobic ceramic membrane with asymmetric structure for water desalination via vacuum membrane distillation process. Desalination 443:212–220

    Article  CAS  Google Scholar 

  • Chen Z, Hu D, Zhang Z, Ren N, Zhu H (2009) Modeling of two-phase anaerobic process treating traditional Chinese medicine wastewater with the IWA anaerobic digestion model no. 1. Bioresour Technol 100(20):4623–4631

    Article  CAS  Google Scholar 

  • Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17(1):145–155

    Article  CAS  Google Scholar 

  • Criscuoli A, Drioli E (2020) Date juice concentration by vacuum membrane distillation. Sep Purif Technol 251:117301

    Article  CAS  Google Scholar 

  • Deshmukh A, Boo C, Karanikola V, Lin S, Straub AP, Tong T, Warsinger DM, Elimelech M (2018) Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Energy Environ Sci 11(5):1177–1196

    Article  CAS  Google Scholar 

  • Dimitris D, Ekaterina-Michaela T, Christina K, Ioannis S, Ioanna SK, Aggeliki L, Sophia H, Michael R, Helen S (2020a) Melissa officinalis ssp. altissima extracts: a therapeutic approach targeting psoriasis in mice. J Ethnopharmacol 246:112208

    Article  CAS  Google Scholar 

  • Ding Z, Liu L, Yu J, Ma R, Yang Z (2008) Concentrating the extract of traditional Chinese medicine by direct contact membrane distillation. J Membr Sci 310(1):539–549

    Article  CAS  Google Scholar 

  • Ding Z, Liu L, Liu Z, Ma R (2010) Fouling resistance in concentrating TCM extract by direct contact membrane distillation. J Membr Sci 362(1):317–325

    Article  CAS  Google Scholar 

  • Ding Z, Liu L, Liu Z, Ma R (2011) The use of intermittent gas bubbling to control membrane fouling in concentrating TCM extract by membrane distillation. J Membr Sci 372(1):172–181

    Article  CAS  Google Scholar 

  • Du X, Zhang Z, Carlson KH, Lee J, Tong T (2018) Membrane fouling and reusability in membrane distillation of shale oil and gas produced water: effects of membrane surface wettability. J Membr Sci 567:199–208

    Article  CAS  Google Scholar 

  • Essalhi M, Khayet M (2015) Pervaporation, vapour permeation and membrane distillation. Basile A, Figoli A, Khayet M (eds). Woodhead Publishing, Oxford, pp 277–316

  • Eykens L, De Sitter K, Dotremont C, De Schepper W, Pinoy L, Van Der Bruggen B (2017) Wetting resistance of commercial membrane distillation membranes in waste streams containing surfactants and oil. Appl Sci 7:118

    Article  Google Scholar 

  • Fang H, Gao JF, Wang HT, Chen CS (2012) Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process. J Membr Sci 403–404:41–46

    Article  Google Scholar 

  • Femina Carolin C, Senthil Kumar P, Janet Joshib G, Vinoth Kumar V (2020) Analysis and removal of pharmaceutical residues from wastewater using membrane bioreactors: a review. Environ Chem Lett

  • Francis L, Ghaffour N, Alsaadi AA, Amy GL (2013) Material gap membrane distillation: a new design for water vapor flux enhancement. J Membr Sci 448:240–247

    Article  CAS  Google Scholar 

  • Franken ACM, Nolten JAM, Mulder MHV, Bargeman D, Smolders CA (1987) Wetting criteria for the applicability of membrane distillation. J Membr Sci 33(3):315–328

    Article  CAS  Google Scholar 

  • Garg MC (2019) Current trends and future developments on (Bio-) membranes. Basile A, Cassano A, Figoli A (eds). Elsevier, Amsterdam, pp 85–110

  • Gryta M (2013) The concentration of geothermal brines with iodine content by membrane distillation. Desalination 325:16–24

    Article  CAS  Google Scholar 

  • Heijman SGJ, Guo H, Li S, van Dijk JC, Wessels LP (2009) Zero liquid discharge: heading for 99% recovery in nanofiltration and reverse osmosis. Desalination 236(1):357–362

    Article  CAS  Google Scholar 

  • Huang Y-X, Wang Z, Jin J, Lin S (2017) Novel janus membrane for membrane distillation with simultaneous fouling and wetting resistance. Environ Sci Technol 51:13304–13310

    Article  CAS  Google Scholar 

  • Hussain A, Minier-Matar J, Janson A, Adham S (2015) Proceedings of the 4th international gas processing symposium. Al-Marri MJ, Eljack FT (eds). Elsevier, Amsterdam, pp 285–292

  • Ji X, Curcio E, Al Obaidani S, Di Profio G, Fontananova E, Drioli E (2010) Membrane distillation-crystallization of seawater reverse osmosis brines. Sep Purif Technol 71(1):76–82

    Article  CAS  Google Scholar 

  • Karlsson HOE, Tragardh G (1996) Applications of pervaporation in food processing. Trends Food Sci Technol 7(3):78–83

    Article  CAS  Google Scholar 

  • Kim J, Kwon H, Lee S, Lee S, Hong S (2017) Membrane distillation (MD) integrated with crystallization (MDC) for shale gas produced water (SGPW) treatment. Desalination 403:172–178

    Article  CAS  Google Scholar 

  • Kim J, Kim J, Hong S (2018) Recovery of water and minerals from shale gas produced water by membrane distillation crystallization. Water Res 129:447–459

    Article  CAS  Google Scholar 

  • Kujawa J, Guillen-Burrieza E, Arafat HA, Kurzawa M, Wolan A, Kujawski W (2015) Raw juice concentration by osmotic membrane distillation process with hydrophobic polymeric membranes. Food Bioprocess Technol 8(10):2146–2158

    Article  CAS  Google Scholar 

  • Kumar D, Ladaniya MS, Gurjar M, Mendke S, Kumar S (2019) Osmotic membrane distillation for retention of antioxidant potential in Nagpur mandarin (Citrus reticulata Blanco) fruit juice concentrate. Food Process Eng 43:e13096

    Google Scholar 

  • Li J, Liu Z, Zheng J, Shi Z, Fan M, Li H (2018) Resource and assay library for components and substances of traditional Chinese medicine. J East China Univ Sci Technol 44(6):901–908

    CAS  Google Scholar 

  • Li J, Guo S, Xu Z, Li J, Pan Z, Du Z, Cheng F (2019) Preparation of omniphobic PVDF membranes with silica nanoparticles for treating coking wastewater using direct contact membrane distillation: electrostatic adsorption vs. chemical bonding. J Membr Sci 574:349–357

    Article  CAS  Google Scholar 

  • Liu X, Ren N, Yuan Y (2009) Performance of a periodic anaerobic baffled reactor fed on chinese traditional medicine industrial wastewater. Biores Technol 100(1):104–110

    Article  CAS  Google Scholar 

  • Liu Xl, Ren NQ, Ma F (2007) Effect of powdered activated carbon on Chinese traditional medicine wastewater treatment in submerged membrane bioreactor with electronic control backwashing. J Environ Sci 19(9):1037–1042

    Article  CAS  Google Scholar 

  • Lu D, Li P, Xiao W, He G, Jiang X (2017) Simultaneous recovery and crystallization control of saline organic wastewater by membrane distillation crystallization. AIChE J 63(6):2187–2197

    Article  CAS  Google Scholar 

  • Lu KJ, Cheng ZL, Chang J, Luo L, Chung T-S (2019) Design of zero liquid discharge desalination (ZLDD) systems consisting of freeze desalination, membrane distillation, and crystallization powered by green energies. Desalination 458:66–75

    Article  CAS  Google Scholar 

  • Lukanin OS, Gunko SM, Bryk MT, Nigmatullin RR (2003) The effect of content of apple juice biopolymers on the concentration by membrane distillation. J Food Eng 60(3):275–280

    Article  Google Scholar 

  • Martínez J, León E, Baena-Moreno FM, Rodríguez-Galán M, Arroyo-Torralvo F, Vilches LF (2020) Techno-economic analysis of a membrane-hybrid process as a novel low-energy alternative for zero liquid discharge systems. Energy Convers Manag 211:112783

    Article  Google Scholar 

  • Nian L-J, Han Y-Z, Lu Y-Y, Kong P, Gao R-C (2013) Concentration of traditional Chinese medicine extraction by multiple-effect membrane distillation. Chin J Pharm 44(1):76–80

    Google Scholar 

  • Ning RY, Troyer TL (2009) Tandom reverse osmosis process for zero-liquid discharge. Desalination 237(1):238–242

    Article  CAS  Google Scholar 

  • Panagopoulos A (2020) Techno-economic evaluatrion of a solar multi-effect distillation/thermal vapor compression hybrid system for brine treatment and salt recovery. Chem Eng Process Process Intensif 152:107934

    Article  CAS  Google Scholar 

  • Pantoja CE, Nariyoshi YN, Seckler MM (2015) Membrane distillation crystallization applied to brine desalination: a hierarchical design procedure. Ind Eng Chem Res 54(10):2776–2793

    Article  CAS  Google Scholar 

  • Pelin OB (2015) Potential of membrane distillation for production of high quality fruit juice concentrate. Crit Rev Food Sci Nutr 55(8):1098–1113

    Article  Google Scholar 

  • Pozdnyakov DI, Khadzieva ZD, Pozdnyakova AE, Zagorskaya NS (2019) Antiallergical effect of new combined nazal aerodisperse system in the conditions of experimental allergic rhinitis. Biomed Pharmacol J 12(1):453–461

    Article  CAS  Google Scholar 

  • Ray SS, Chen S-S, Sangeetha D, Chang H-M, Thanh CND, Le QH, Ku H-M (2018) Developments in forward osmosis and membrane distillation for desalination of waters. Environ Chem Lett 16(4):1247–1265

    Article  CAS  Google Scholar 

  • Razmjou A, Arifin E, Dong G, Mansouri J, Chen V (2012) Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J Membr Sci 415–416:850–863

    Article  Google Scholar 

  • Ren N, Gao Y, Feng H (2003) Two-phase anaerobic - aerobic process for treatment of wastewater from traditional Chinese medicine production. China Water Wastewater 6:72–73

    Google Scholar 

  • Ren Y, Deng Y, Ma H, Zheng R, Ye M, Yang A, Liu X, Liu T (2020) Research progress and challenges of network pharmacology in field of traditional Chinese medicine. Chin Tradit Herb Drugs 51(18):4789–4797

    Google Scholar 

  • Rezakazemi M, Khajeh A, Mesbah M (2018) Membrane filtration of wastewater from gas and oil production. Environ Chem Lett 16(2):367–388

    Article  CAS  Google Scholar 

  • Rezakazemi M, Dashti A, Riasat Harami H, Hajilari N, Inamuddin (2018) Fouling-resistant membranes for water reuse. Environ Chem Lett 16(3):715–763

    Article  CAS  Google Scholar 

  • Roshani R, Ardeshiri F, Peyravi M, Jahanshahi M (2018) Highly permeable PVDF membrane with PS/ZnO nanocomposite incorporated for distillation process. RSC Advances 8:23499–23515

    Article  CAS  Google Scholar 

  • Shafi HZ, Rahman F, Zubair SM, Matin A, Alnoor O, Kafiah F, Mahmood A (2018) Concenrate management technologies for desalination processes leading to zero liquid discharge: technologies, recent trends and future outlook. Desalination Water Treat 105:92–118

    Article  CAS  Google Scholar 

  • Shi Y, Zhao XT, Zhang YM, Ren NQ (2009) Back propagation neural network (BPNN) prediction model and control strategies of methanogen phase reactor treating traditional Chinese medicine wastewater (TCMW). J Biotechnol 144(1):70–74

    Article  CAS  Google Scholar 

  • Shi F, Li B, Pan L, Guo L (2015) Vacuum membrane distillation for the concentration of the extract of scutellariae radix chinese traditional patent medicine 37(1), 95–99

  • Soares A (2020) Wastewater treatment in 2050: Challenges ahead and future vision in a European context. Environ Sci Ecotechnol 2:100030

    Article  Google Scholar 

  • Song W, Lee LY, Liu E, Shi X, Ong SL, Ng HY (2020) Spatial variation of fouling behavior in high recovery nanofiltration for industrial reverse osmosis brine treatment towards zero liquid discharge. J Membr Sci 609:118185

    Article  CAS  Google Scholar 

  • Tun CM, Fane AG, Matheickal JT, Sheikholeslami R (2005) Membrane distillation crystallization of concentrated salts—flux and crystal formation. J Membr Sci 257(1):144–155

    Article  CAS  Google Scholar 

  • Wang Z, Deshmukh A, Du Y, Elimelech M (2019) Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes. Water Res 170:115317

    Article  Google Scholar 

  • Wang X, Du J, Zhou J (2019) Antibiotic activities of extracts from Prunus mume fruit against food-borne bacterial pathogens and its active components. Ind Crops Prod 133:409–413

    Article  CAS  Google Scholar 

  • Woo YC, Kim Y, Yao M, Tijing LD, Choi J, Lee S, Kim S, Shon H (2018) Hierarchical composite membranes with robust omniphobic surface using layer-by-layer assembly technique. Environ Sci Technol 52(4):2186–2196

    Article  CAS  Google Scholar 

  • Xin Y, Zhou Z, Ming Q, Sun D, Han J, Ye X, Dai S, Jiang L-M, Zhao X, An Y (2020) A two-stage desalination process for zero liquid discharge of flue gas desulfurization wastewater by chloride precipitation. J Hazard Mater 397:122744

    Article  CAS  Google Scholar 

  • Xiong R, Wei C (2017) Current status and technology trends of zero liquid discharge at coal chemical industry in China. J Water Process Eng 19:346–351

    Article  Google Scholar 

  • Yang H-C, Zhong W, Hou J, Chen V, Xu Z-K (2017) Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation. J Membr Sci 523:1–7

    Article  CAS  Google Scholar 

  • Zhang C, Wang X, Ma Z, Luan Z, Wang Y, Wang Z, Wang L (2020) Removal of phenolic substances from wastewater by algae. Rev Environ Chem Lett 18(2):377–392

    Article  CAS  Google Scholar 

  • Zheng R, Chen Y, Wang J, Song J, Li X-M, He T (2018) Preparation of omniphobic PVDF membrane with hierarchical structure for treating saline oily wastewater using direct contact membrane distillation. J Membr Sci 555:197–205

    Article  CAS  Google Scholar 

  • Zhong Z, Xing W, Zhang B (2013) Fabrication of ceramic membranes with controllable surface roughness and their applications in oil/water separation. Ceram Int 39(4):4355–4361

    Article  CAS  Google Scholar 

  • Zhong W, Li H, Ye Y, Chen V (2016) Evaluation of silica fouling for coal seam gas produced water in a submerged vacuum membrane distillation system. Desalination 393:52–64

    Article  CAS  Google Scholar 

  • Zhong W, Li Q, Zhao X, Chen S (2020) Membrane preparation for unconventional desalination by membrane distillation and pervaporation. In: Zhang Z, Zhang W, Lichtfouse E (eds) Membranes for environmental applications environmental chemistry for a sustainable world, vol 42. Springer, Cham

    Google Scholar 

  • Zhong W, Hou J, Yang H-C, Chen V (2017) Superhydrophobic membranes via facile bio-inspired mineralization for vacuum membrane distillation. J Membr Sci 540:98–107

    Article  CAS  Google Scholar 

  • Zhong W, Ji C, Li H, Hou J, Chen V (2018) Fouling mitigation in submerged VMD for the treatment of brackish groundwater concentrates with transverse vibration and crystallizer. Desalination 426:32–41

    Article  CAS  Google Scholar 

  • Zhu P, Kong T, Tang X, Wang L (2017) Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating. Nature Commun 8:15823

    Article  CAS  Google Scholar 

  • Zou T, Kang G, Zhou M, Li M, Cao Y (2019) Submerged vacuum membrane distillation crystallization (S-VMDC) with turbulent intensification for the concentration of NaCl solution. Sep Purif Technol 211:151–161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial supports of the Science and Technology Program of Guangzhou (No. 201904010054), the China Postdoctoral Science Foundation (No. 2020M672575), the National Key Research and Development Program of China (No. 2019YFC1711300) and the Top Young Talent program of Guangdong Pearl River Talent Plan (No. 2019QN01G109).

Funding

This study was financially supported by the 4 Grants, namely the Science and Technology Program of Guangzhou (No. 201904010054), the China Postdoctoral Science Foundation (No. 2020M672575), the National Key Research and Development Program of China (No. 2019YFC1711300) and the Top Young Talent program of Guangdong Pearl River Talent Plan (No. 2019QN01G109).

Author information

Authors and Affiliations

Authors

Contributions

Wenwei Zhong was responsible for the references reviewing, writing the first daft of this manuscript. Liwei Guo contributed on the background investigation of traditional Chinese medicine industry and draft discussion, Chao Ji and Guangxi Dong contributed on the draft preparation and discussion, Sheng Li was responsible for the structure design of this article, draft preparation and discussion, manuscript submission correspondences.

Corresponding author

Correspondence to Sheng Li.

Ethics declarations

Conflicts of interest

Authors declare that there is no conflict of interest for the publication of this manuscript.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

All authors of this article have read and approved the submission of this manuscript, and this manuscript has not been published or being reviewed for publication in other Journals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, W., Guo, L., Ji, C. et al. Membrane distillation for zero liquid discharge during treatment of wastewater from the industry of traditional Chinese medicine: a review. Environ Chem Lett 19, 2317–2330 (2021). https://doi.org/10.1007/s10311-020-01162-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-020-01162-y

Keywords

Navigation